ترغب بنشر مسار تعليمي؟ اضغط هنا

An Incentive Mechanism for Federated Learning in Wireless Cellular network: An Auction Approach

297   0   0.0 ( 0 )
 نشر من قبل Tra Le Ms
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated Learning (FL) is a distributed learning framework that can deal with the distributed issue in machine learning and still guarantee high learning performance. However, it is impractical that all users will sacrifice their resources to join the FL algorithm. This motivates us to study the incentive mechanism design for FL. In this paper, we consider a FL system that involves one base station (BS) and multiple mobile users. The mobile users use their own data to train the local machine learning model, and then send the trained models to the BS, which generates the initial model, collects local models and constructs the global model. Then, we formulate the incentive mechanism between the BS and mobile users as an auction game where the BS is an auctioneer and the mobile users are the sellers. In the proposed game, each mobile user submits its bids according to the minimal energy cost that the mobile users experiences in participating in FL. To decide winners in the auction and maximize social welfare, we propose the primal-dual greedy auction mechanism. The proposed mechanism can guarantee three economic properties, namely, truthfulness, individual rationality and efficiency. Finally, numerical results are shown to demonstrate the performance effectiveness of our proposed mechanism.



قيم البحث

اقرأ أيضاً

360 - Shuyuan Zheng , Yang Cao , 2021
Federated learning (FL) is an emerging paradigm for machine learning, in which data owners can collaboratively train a model by sharing gradients instead of their raw data. Two fundamental research problems in FL are incentive mechanism and privacy p rotection. The former focuses on how to incentivize data owners to participate in FL. The latter studies how to protect data owners privacy while maintaining high utility of trained models. However, incentive mechanism and privacy protection in FL have been studied separately and no work solves both problems at the same time. In this work, we address the two problems simultaneously by an FL-Market that incentivizes data owners participation by providing appropriate payments and privacy protection. FL-Market enables data owners to obtain compensation according to their privacy loss quantified by local differential privacy (LDP). Our insight is that, by meeting data owners personalized privacy preferences and providing appropriate payments, we can (1) incentivize privacy risk-tolerant data owners to set larger privacy parameters (i.e., gradients with less noise) and (2) provide preferred privacy protection for privacy risk-averse data owners. To achieve this, we design a personalized LDP-based FL framework with a deep learning-empowered auction mechanism for incentivizing trading gradients with less noise and optimal aggregation mechanisms for model updates. Our experiments verify the effectiveness of the proposed framework and mechanisms.
Federated learning has made an important contribution to data privacy-preserving. Many previous works are based on the assumption that the data are independently identically distributed (IID). As a result, the model performance on non-identically ind ependently distributed (non-IID) data is beyond expectation, which is the concrete situation. Some existing methods of ensuring the model robustness on non-IID data, like the data-sharing strategy or pretraining, may lead to privacy leaking. In addition, there exist some participants who try to poison the model with low-quality data. In this paper, a performance-based parameter return method for optimization is introduced, we term it FederatedSmart (FedSmart). It optimizes different model for each client through sharing global gradients, and it extracts the data from each client as a local validation set, and the accuracy that model achieves in round t determines the weights of the next round. The experiment results show that FedSmart enables the participants to allocate a greater weight to the ones with similar data distribution.
Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients. To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients. It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients. This paper aims to propose a contract theory based FL task training model towards minimizing incentive budget subject to clients being individually rational (IR) and incentive compatible (IC) in each FL training round. We design a two-dimensional contract model by formally defining two private types of clients, namely data quality and computation effort. To effectively aggregate the trained models, a contract-based aggregator is proposed. We analyze the feasible and optimal contract solutions to the proposed contract model. %Experimental results demonstrate that the proposed framework and contract model can effective improve the generation accuracy of FL tasks. Experimental results show that the generalization accuracy of the FL tasks can be improved by the proposed incentive mechanism where contract-based aggregation is applied.
120 - Mingshu Cong , Han Yu , Xi Weng 2020
Federated learning (FL) has shown great potential for addressing the challenge of isolated data islands while preserving data privacy. It allows artificial intelligence (AI) models to be trained on locally stored data in a distributed manner. In orde r to build an ecosystem for FL to operate in a sustainable manner, it has to be economically attractive to data owners. This gives rise to the problem of FL incentive mechanism design, which aims to find the optimal organizational and payment structure for the federation in order to achieve a series of economic objectives. In this paper, we present a VCG-based FL incentive mechanism, named FVCG, specifically designed for incentivizing data owners to contribute all their data and truthfully report their costs in FL settings. It maximizes the social surplus and minimizes unfairness of the federation. We provide an implementation of FVCG with neural networks and theoretic proofs on its performance bounds. Extensive numerical experiment results demonstrated the effectiveness and economic reasonableness of FVCG.
There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its adva ntages in data privacy-preserving, Federated Learning (FL) still has challenges in heterogeneity across UEs data and physical resources. We first propose a FL algorithm which can handle the heterogeneous UEs data challenge without further assumptions except strongly convex and smooth loss functions. We provide the convergence rate characterizing the trade-off between local computation rounds of UE to update its local model and global communication rounds to update the FL global model. We then employ the proposed FL algorithm in wireless networks as a resource allocation optimization problem that captures the trade-off between the FL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FL is non-convex, we exploit this problems structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights to problem design. Finally, we illustrate the theoretical analysis for the new algorithm with Tensorflow experiments and extensive numerical results for the wireless resource allocation sub-problems. The experiment results not only verify the theoretical convergence but also show that our proposed algorithm outperforms the vanilla FedAvg algorithm in terms of convergence rate and testing accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا