ﻻ يوجد ملخص باللغة العربية
We present rest-optical spectroscopic properties of a sample of four galaxies in the Atacama Large Millimeter/submillimeter Array Hubble Ultra Deep Field (ALMA HUDF). These galaxies span the redshift range $1.41 leq z leq 2.54$ and the stellar mass range $10.36leqlog(M_*/{rm M}_{odot})leq10.91$. They have existing far-infrared and radio measurements of dust-continuum and molecular gas emission from which bolometric star-formation rates (SFRs), dust masses, and molecular gas masses have been estimated. We use new $H$- and $K$-band near-infrared spectra from the Keck/MOSFIRE spectrograph to estimate SFRs from dust-corrected H$alpha$ emission (SFR(H$alpha$)) and gas-phase oxygen abundances from the ratio [NII]$lambda 6584$/H$alpha$. We find that the dust-corrected SFR(H$alpha$) is systematically lower than the bolometric SFR by a factor of several, and measure gas-phase oxygen abundances in a narrow range, $12+log(mbox{O/H})=8.59-8.69$ ($0.8-1.0: (mbox{O/H})_{odot}$). Relative to a large $zsim 2$ comparison sample from the MOSDEF survey, the ALMA HUDF galaxies scatter roughly symmetrically around the best-fit linear mass-metallicity relation, providing tentative evidence for a flattening in the SFR dependence of metallicity at high stellar mass. Combining oxygen abundances with estimates of dust and molecular gas masses, we show that there is no significant evolution in the normalization of the dust-to-gas ratio DGR vs. metallicity relation from $zsim0$ to $zsim2$. This result is consistent with some semi-analytic models and cosmological simulations describing the evolution of dust in galaxies. Tracing the actual form of the DGR vs. metallicity relation at high redshift now requires combined measurements of dust, gas, and metallicity over a significantly wider range in metallicity.
Lyman break analogues (LBAs) are a population of star-forming galaxies at low redshift (z ~ 0.2) selected in the ultraviolet (UV). These objects present higher star formation rates and lower dust extinction than other galaxies with similar masses and
The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: stellar evolution, grain formation and destruction, galactic inflows and outflows. Understanding such processes is essential to follow th
A diverse range of dust attenuation laws is found in star-forming galaxies. In particular, Tress et al. (2018) studied the SHARDS survey to constrain the NUV bump strength (B) and the total-to selective ratio (Rv) of 1,753 star-forming galaxies in th
Observations have revealed that disturbances in the cold neutral atomic hydrogen (HI) in galaxies are ubiquitous, but the reasons for these disturbances remain unclear. While some studies suggest that asymmetries in integrated HI spectra (global HI a
We present $^{12}$CO(1-0) and $^{12}$CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies a