ترغب بنشر مسار تعليمي؟ اضغط هنا

A McCool Whitehead type theorem for finitely generated subgroups of $mathsf{Out}(F_n)$

83   0   0.0 ( 0 )
 نشر من قبل Mark Feighn
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

S. Gersten announced an algorithm that takes as input two finite sequences $vec K=(K_1,dots, K_N)$ and $vec K=(K_1,dots, K_N)$ of conjugacy classes of finitely generated subgroups of $F_n$ and outputs: (1) $mathsf{YES}$ or $mathsf{NO}$ depending on whether or not there is an element $thetain mathsf{Out}(F_n)$ such that $theta(vec K)=vec K$ together with one such $theta$ if it exists and (2) a finite presentation for the subgroup of $mathsf{Out}(F_n)$ fixing $vec K$. S. Kalajdv{z}ievski published a verification of this algorithm. We present a different algorithm from the point of view of Culler-Vogtmanns Outer space. New results include that the subgroup of $mathsf{Out}(F_n)$ fixing $vec K$ is of type $mathsf{VF}$, an equivariant version of these results, an application, and a unified approach to such questions.



قيم البحث

اقرأ أيضاً

This is the second part of a two part work in which we prove that for every finitely generated subgroup $Gamma < mathsf{Out}(F_n)$, either $Gamma$ is virtually abelian or its second bounded cohomology $H^2_b(Gamma;mathbb{R})$ contains an embedding of $ell^1$. Here in Part II we focus on finite lamination subgroups $Gamma$ --- meaning that the set of all attracting laminations of elements of $Gamma$ is finite --- and on the construction of hyperbolic actions of those subgroups to which the general theory of Part I is applicable.
A Kleinian group $Gamma < mathrm{Isom}(mathbb H^3)$ is called convex cocompact if any orbit of $Gamma$ in $mathbb H^3$ is quasiconvex or, equivalently, $Gamma$ acts cocompactly on the convex hull of its limit set in $partial mathbb H^3$. Subgroup sta bility is a strong quasiconvexity condition in finitely generated groups which is intrinsic to the geometry of the ambient group and generalizes the classical quasiconvexity condition above. Importantly, it coincides with quasiconvexity in hyperbolic groups and convex cocompactness in mapping class groups. Using the Morse boundary, we develop an equivalent characterization of subgroup stability which generalizes the above boundary characterization from Kleinian groups.
192 - Michael Handel , Lee Mosher 2013
This is the fourth and last in a series of four papers (with research announcement posted on this arXiv) that develop a decomposition theory for subgroups of $text{Out}(F_n)$. In this paper we develop general ping-pong techniques for the action of $t ext{Out}(F_n)$ on the space of lines of $F_n$. Using these techniques we prove the main results stated in the research announcement, Theorem C and its special case Theorem I, the latter of which says that for any finitely generated subgroup $mathcal H$ of $text{Out}(F_n)$ that acts trivially on homology with $mathbb{Z}/3$ coefficients, and for any free factor system $mathcal F$ that does not consist of (the conjugacy classes of) a complementary pair of free factors of $F_n$ nor of a rank $n-1$ free factor, if $mathcal H$ is fully irreducible relative to $mathcal F$ then $mathcal H$ has an element that is fully irreducible relative to $mathcal F$. We also prove Theorem J which, under the additional hypothesis that $mathcal H$ is geometric relative to $mathcal F$, describes a strong relation between $mathcal H$ and a mapping class group of a surface. v3 and 4: Strengthened statements of the main theorems, highlighting the role of the finite generation hypothesis, and providing an alternative hypothesis. Strengthened proofs of lamination ping-pong, and a strengthened conclusion in Theorem J, for further applications.
129 - Michael Handel , Lee Mosher 2015
In this two part work we prove that for every finitely generated subgroup $Gamma < text{Out}(F_n)$, either $Gamma$ is virtually abelian or $H^2_b(Gamma;mathbb{R})$ contains an embedding of $ell^1$. The method uses actions on hyperbolic spaces, for pu rposes of constructing quasimorphisms. Here in Part I, after presenting the general theory, we focus on the case of infinite lamination subgroups $Gamma$ - those for which the set of all attracting laminations of all elements of $Gamma$ is infinite - using actions on free splitting complexes of free groups.
For any finite collection $f_i$ of fully irreducible automorphisms of the free group $F_n$ we construct a connected $delta$-hyperbolic $Out(F_n)$-complex in which each $f_i$ has positive translation length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا