ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting Geographic Information with Neural Cellular Automata

61   0   0.0 ( 0 )
 نشر من قبل Zhecheng Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a novel framework using neural cellular automata (NCA) to regenerate and predict geographic information. The model extends the idea of using NCA to generate/regenerate a specific image by training the model with various geographic data, and thus, taking the traffic condition map as an example, the model is able to predict traffic conditions by giving certain induction information. Our research verified the analogy between NCA and gene in biology, while the innovation of the model significantly widens the boundary of possible applications based on NCAs. From our experimental results, the model shows great potentials in its usability and versatility which are not available in previous studies. The code for model implementation is available at https://redacted.



قيم البحث

اقرأ أيضاً

In this paper, we propose a new approach for building cellular automata to solve real-world segmentation problems. We design and train a cellular automaton that can successfully segment high-resolution images. We consider a colony that densely inhabi ts the pixel grid, and all cells are governed by a randomized update that uses the current state, the color, and the state of the $3times 3$ neighborhood. The space of possible rules is defined by a small neural network. The update rule is applied repeatedly in parallel to a large random subset of cells and after convergence is used to produce segmentation masks that are then back-propagated to learn the optimal update rules using standard gradient descent methods. We demonstrate that such models can be learned efficiently with only limited trajectory length and that they show remarkable ability to organize the information to produce a globally consistent segmentation result, using only local information exchange. From a practical perspective, our approach allows us to build very efficient models -- our smallest automaton uses less than 10,000 parameters to solve complex segmentation tasks.
An intelligent observer looks at the world and sees not only what is, but what is moving and what can be moved. In other words, the observer sees how the present state of the world can transform in the future. We propose a model that predicts future images by learning to represent the present state and its transformation given only a sequence of images. To do so, we introduce an architecture with a latent state composed of two components designed to capture (i) the present image state and (ii) the transformation between present and future states, respectively. We couple this latent state with a recurrent neural network (RNN) core that predicts future frames by transforming past states into future states by applying the accumulated state transformation with a learned operator. We describe how this model can be integrated into an encoder-decoder convolutional neural network (CNN) architecture that uses weighted residual connections to integrate representations of the past with representations of the future. Qualitatively, our approach generates image sequences that are stable and capture realistic motion over multiple predicted frames, without requiring adversarial training. Quantitatively, our method achieves prediction results comparable to state-of-the-art results on standard image prediction benchmarks (Moving MNIST, KTH, and UCF101).
A novel, information-based classification of elementary cellular automata is proposed that circumvents the problems associated with isolating whether complexity is in fact intrinsic to a dynamical rule, or if it arises merely as a product of a comple x initial state. Transfer entropy variations processed by the system split the 256 elementary rules into three information classes, based on sensitivity to initial conditions. These classes form a hierarchy such that coarse-graining transitions observed among elementary cellular automata rules predominately occur within each information- based class, or much more rarely, down the hierarchy.
The complexity of cellular automata is traditionally measured by their computational capacity. However, it is difficult to choose a challenging set of computational tasks suitable for the parallel nature of such systems. We study the ability of autom ata to emulate one another, and we use this notion to define such a set of naturally emerging tasks. We present the results for elementary cellular automata, although the core ideas can be extended to other computational systems. We compute a graph showing which elementary cellular automata can be emulated by which and show that certain chaotic automata are the only ones that cannot emulate any automata non-trivially. Finally, we use the emulation notion to suggest a novel definition of chaos that we believe is suitable for discrete computational systems. We believe our work can help design parallel computational systems that are Turing-complete and also computationally efficient.
With the advent of huges volumes of data produced in the form of fast streams, real-time machine learning has become a challenge of relevance emerging in a plethora of real-world applications. Processing such fast streams often demands high memory an d processing resources. In addition, they can be affected by non-stationary phenomena (concept drift), by which learning methods have to detect changes in the distribution of streaming data, and adapt to these evolving conditions. A lack of efficient and scalable solutions is particularly noted in real-time scenarios where computing resources are severely constrained, as it occurs in networks of small, numerous, interconnected processing units (such as the so-called Smart Dust, Utility Fog, or Swarm Robotics paradigms). In this work we propose LUNAR, a streamified version of cellular automata devised to successfully meet the aforementioned requirements. It is able to act as a real incremental learner while adapting to drifting conditions. Extensive simulations with synthetic and real data will provide evidence of its competitive behavior in terms of classification performance when compared to long-established and successful online learning methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا