ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental evidence of a {phi} Josephson junction

126   0   0.0 ( 0 )
 نشر من قبل Edward Goldobin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate experimentally the existence of Josephson junctions having a doubly degenerate ground state with an average Josephson phase psi=pm{phi}. The value of {phi} can be chosen by design in the interval 0<{phi}<pi. The junctions used in our experiments are fabricated as 0-{pi} Josephson junctions of moderate normalized length with asymmetric 0 and {pi} regions. We show that (a) these {phi} Josephson junctions have two critical currents, corresponding to the escape of the phase {psi} from -{phi} and +{phi} states; (b) the phase {psi} can be set to a particular state by tuning an external magnetic field or (c) by using a proper bias current sweep sequence. The experimental observations are in agreement with previous theoretical predictions.

قيم البحث

اقرأ أيضاً

We calculate the current phase relation of a planar Josephson junction with a ferromagnetic weak link located on top of a thin normal metal film. Following experimental observations we assume transparent superconductor-ferromagnet interfaces. This pr ovides the best interlayer coupling and a low suppression of the superconducting correlations penetrating from the superconducting electrodes into the ferromagnetic layer. We show that this Josephson junction is a promising candidate for an experimental {phi} junction realization.
We present an experimental and theoretical study of the magnetic field dependence of the critical current of Josephson junction ladders. At variance with the well-known case of a one-dimensional (1D) parallel array of Josephson junctions the magnetic field patterns display a single minimum even for very low values of the self-inductance parameter $beta_{rm L}$. Experiments performed changing both the geometrical value of the inductance and the critical current of the junctions show a good agreement with numerical simulations. We argue that the observed magnetic field patterns are due to a peculiar mapping between the isotropic Josephson ladder and the 1D parallel array with the self-inductance parameter $beta_{rm L}^{rm eff}=beta_{rm L}+2$.
244 - James A. Blackburn 2020
Switching current distributions have for decades been an indispensable diagnostic tool for studying Josephson junctions. They have played a key role in testing the conjecture of a macroscopic quantum state in junctions at millikelvin temperatures. Th e conventional basis of the test has been the observation of temperature independence of SCD peak widths, and that led to affirmative conclusions about a crossover. A different criterion is proposed here - the distance of the SCD peak from the junction critical current - and its efficacy is demonstrated. This test has distinct advantages in terms of precision, and it is found that, for three example experiments, the evidence for a crossover to the conjectured macroscopic quantum state is unequivocally negative. The implications of this finding for superconducting qubits are considered.
Transport is called nonreciprocal when not only the sign, but also the absolute value of the current, depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, e.g., by the interplay of spin-orbit coupling and magnetic field. So far, observation of nonreciprocity was always tied to resistivity, and dissipationless nonreciprocal circuit elements were elusive. Here, we engineer fully superconducting nonreciprocal devices based on highly-transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link nonreciprocal supercurrent to the asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient for the first time. A semi-quantitative model well explains the main features of our experimental data. Nonreciprocal Josephson junctions have the potential to become for superconducting circuits what $pn$-junctions are for traditional electronics, opening the way to novel nondissipative circuit elements.
We investigate hysteresis in the transport properties of Superconductor - Normal metal - Superconductor (S-N-S) junctions at low temperatures by measuring directly the electron temperature in the normal metal. Our results demonstrate unambiguously th at the hysteresis results from an increase of the normal metal electron temperature once the junction switches to the resistive state. In our geometry, the electron temperature increase is governed by the thermal resistance of the superconducting electrodes of the junction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا