ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentiable Refraction-Tracing for Mesh Reconstruction of Transparent Objects

112   0   0.0 ( 0 )
 نشر من قبل Bojian Wu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Capturing the 3D geometry of transparent objects is a challenging task, ill-suited for general-purpose scanning and reconstruction techniques, since these cannot handle specular light transport phenomena. Existing state-of-the-art methods, designed specifically for this task, either involve a complex setup to reconstruct complete refractive ray paths, or leverage a data-driven approach based on synthetic training data. In either case, the reconstructed 3D models suffer from over-smoothing and loss of fine detail. This paper introduces a novel, high precision, 3D acquisition and reconstruction method for solid transparent objects. Using a static background with a coded pattern, we establish a mapping between the camera view rays and locations on the background. Differentiable tracing of refractive ray paths is then used to directly optimize a 3D mesh approximation of the object, while simultaneously ensuring silhouette consistency and smoothness. Extensive experiments and comparisons demonstrate the superior accuracy of our method.



قيم البحث

اقرأ أيضاً

This paper addresses the problem of reconstructing the surface shape of transparent objects. The difficulty of this problem originates from the viewpoint dependent appearance of a transparent object, which quickly makes reconstruction methods tailore d for diffuse surfaces fail disgracefully. In this paper, we introduce a fixed viewpoint approach to dense surface reconstruction of transparent objects based on refraction of light. We present a simple setup that allows us to alter the incident light paths before light rays enter the object by immersing the object partially in a liquid, and develop a method for recovering the object surface through reconstructing and triangulating such incident light paths. Our proposed approach does not need to model the complex interactions of light as it travels through the object, neither does it assume any parametric form for the object shape nor the exact number of refractions and reflections taken place along the light paths. It can therefore handle transparent objects with a relatively complex shape and structure, with unknown and inhomogeneous refractive index. We also show that for thin transparent objects, our proposed acquisition setup can be further simplified by adopting a single refraction approximation. Experimental results on both synthetic and real data demonstrate the feasibility and accuracy of our proposed approach.
We introduce a differential visual similarity metric to train deep neural networks for 3D reconstruction, aimed at improving reconstruction quality. The metric compares two 3D shapes by measuring distances between multi-view images differentiably ren dered from the shapes. Importantly, the image-space distance is also differentiable and measures visual similarity, rather than pixel-wise distortion. Specifically, the similarity is defined by mean-squared errors over HardNet features computed from probabilistic keypoint maps of the compared images. Our differential visual shape similarity metric can be easily plugged into various 3D reconstruction networks, replacing their distortion-based losses, such as Chamfer or Earth Mover distances, so as to optimize the network weights to produce reconstructions with better structural fidelity and visual quality. We demonstrate this both objectively, using well-known shape metrics for retrieval and classification tasks that are independent from our new metric, and subjectively through a perceptual study.
Mesh reconstruction from a 3D point cloud is an important topic in the fields of computer graphic, computer vision, and multimedia analysis. In this paper, we propose a voxel structure-based mesh reconstruction framework. It provides the intrinsic me tric to improve the accuracy of local region detection. Based on the detected local regions, an initial reconstructed mesh can be obtained. With the mesh optimization in our framework, the initial reconstructed mesh is optimized into an isotropic one with the important geometric features such as external and internal edges. The experimental results indicate that our framework shows great advantages over peer ones in terms of mesh quality, geometric feature keeping, and processing speed.
We present a method for differentiable rendering of 3D surfaces that supports both explicit and implicit representations, provides derivatives at occlusion boundaries, and is fast and simple to implement. The method first samples the surface using no n-differentiable rasterization, then applies differentiable, depth-aware point splatting to produce the final image. Our approach requires no differentiable meshing or rasterization steps, making it efficient for large 3D models and applicable to isosurfaces extracted from implicit surface definitions. We demonstrate the effectiveness of our method for implicit-, mesh-, and parametric-surface-based inverse rendering and neural-network training applications. In particular, we show for the first time efficient, differentiable rendering of an isosurface extracted from a neural radiance field (NeRF), and demonstrate surface-based, rather than volume-based, rendering of a NeRF.
Mesh denoising is a critical technology in geometry processing that aims to recover high-fidelity 3D mesh models of objects from their noise-corrupte
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا