ﻻ يوجد ملخص باللغة العربية
We introduce a differential visual similarity metric to train deep neural networks for 3D reconstruction, aimed at improving reconstruction quality. The metric compares two 3D shapes by measuring distances between multi-view images differentiably rendered from the shapes. Importantly, the image-space distance is also differentiable and measures visual similarity, rather than pixel-wise distortion. Specifically, the similarity is defined by mean-squared errors over HardNet features computed from probabilistic keypoint maps of the compared images. Our differential visual shape similarity metric can be easily plugged into various 3D reconstruction networks, replacing their distortion-based losses, such as Chamfer or Earth Mover distances, so as to optimize the network weights to produce reconstructions with better structural fidelity and visual quality. We demonstrate this both objectively, using well-known shape metrics for retrieval and classification tasks that are independent from our new metric, and subjectively through a perceptual study.
3D content creation is referred to as one of the most fundamental tasks of computer graphics. And many 3D modeling algorithms from 2D images or curves have been developed over the past several decades. Designers are allowed to align some conceptual i
Manually authoring 3D shapes is difficult and time consuming; generative models of 3D shapes offer compelling alternatives. Procedural representations are one such possibility: they offer high-quality and editable results but are difficult to author
We present a method for differentiable rendering of 3D surfaces that supports both explicit and implicit representations, provides derivatives at occlusion boundaries, and is fast and simple to implement. The method first samples the surface using no
Capturing the 3D geometry of transparent objects is a challenging task, ill-suited for general-purpose scanning and reconstruction techniques, since these cannot handle specular light transport phenomena. Existing state-of-the-art methods, designed s
A popular way to create detailed yet easily controllable 3D shapes is via procedural modeling, i.e. generating geometry using programs. Such programs consist of a series of instructions along with their associated parameter values. To fully realize t