ﻻ يوجد ملخص باللغة العربية
Neural networks have excelled at regression and classification problems when the input space consists of scalar variables. As a result of this proficiency, several popular packages have been developed that allow users to easily fit these kinds of models. However, the methodology has excluded the use of functional covariates and to date, there exists no software that allows users to build deep learning models with this generalized input space. To the best of our knowledge, the functional neural network (FuncNN) library is the first such package in any programming language; the library has been developed for R and is built on top of the keras architecture. Throughout this paper, several functions are introduced that provide users an avenue to easily build models, generate predictions, and run cross-validations. A summary of the underlying methodology is also presented. The ultimate contribution is a package that provides a set of general modelling and diagnostic tools for data problems in which there exist both functional and scalar covariates.
During the past five years the Bayesian deep learning community has developed increasingly accurate and efficient approximate inference procedures that allow for Bayesian inference in deep neural networks. However, despite this algorithmic progress a
We consider the variation space corresponding to a dictionary of functions in $L^2(Omega)$ and present the basic theory of approximation in these spaces. Specifically, we compare the definition based on integral representations with the definition in
We propose a novel Bayesian neural network architecture that can learn invariances from data alone by inferring a posterior distribution over different weight-sharing schemes. We show that our model outperforms other non-invariant architectures, when
We propose a novel method, termed SuMo-net, that uses partially monotonic neural networks to learn a time-to-event distribution from a sample of covariates and right-censored times. SuMo-net models the survival function and the density jointly, and o
It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference