ترغب بنشر مسار تعليمي؟ اضغط هنا

A Significant Increase in Detection of High-Resolution Emission Spectra Using a Three-Dimensional Atmospheric Model of a Hot Jupiter

63   0   0.0 ( 0 )
 نشر من قبل Hayley Beltz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution spectroscopy has opened the way for new, detailed study of exoplanet atmospheres. There is evidence that this technique can be sensitive to the complex, three-dimensional (3D) atmospheric structure of these planets. In this work, we perform cross correlation analysis on high resolution (R~100,000) CRIRES/VLT emission spectra of the Hot Jupiter HD 209458b. We generate template emission spectra from a 3D atmospheric circulation model of the planet, accounting for temperature structure and atmospheric motions---winds and planetary rotation---missed by spectra calculated from one-dimensional models. In this first-of-its-kind analysis, we find that using template spectra generated from a 3D model produces a more significant detection (6.9 sigma) of the planets signal than any of the hundreds of one-dimensional models we tested (maximum of 5.1 sigma). We recover the planets thermal emission, its orbital motion, and the presence of CO in its atmosphere at high significance. Additionally, we analyzed the relative influences of 3D temperature and chemical structures in this improved detection, including the contributions from CO and H2O, as well as the role of atmospheric Doppler signatures from winds and rotation. This work shows that the Hot Jupiters 3D atmospheric structure has a first-order influence on its emission spectra at high resolution and motivates the use of multi-dimensional atmospheric models in high-resolution spectral analysis.

قيم البحث

اقرأ أيضاً

We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectr a in general. We find that carbon dioxide absorption at 4.4 and 15 microns is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the 3D atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the day side, their abundances can be considerably reduced on the cooler planetary limb. However, given the predicted limb temperatures and TiO abundances, the models optical opacity is too high. For HD 189733b we find a good match with some infrared data sets and constrain the altitude of a postulated haze layer. For this planet, substantial differences can exist between the transmission spectra of the leading and trailing hemispheres, which is an excellent probe of carbon chemistry. In thermochemical equilibrium, the cooler leading hemisphere is methane-dominated, and the hotter trailing hemisphere is CO-dominated, but these differences may be eliminated by non-equilibrium chemistry due to vertical mixing. It may be possible to constrain the carbon chemistry of this planet, and its spatial variation, with JWST.
109 - Kristen Menou 2019
Global Circulation Models (GCMs) of atmospheric flows are now routinely used to interpret observational data on Hot Jupiters. Localized equatorial $beta$-plane simulations by Fromang et al. (2016) have revealed that a barotropic (horizontal shear) in stability of the equatorial jet appears at horizontal resolutions beyond those typically achieved in global models; this instability could limit wind speeds and lead to increased atmospheric variability. To address this possibility, we adapt the computationally efficient, pseudo-spectral PlaSim GCM, originally designed for Earth studies, to model Hot Jupiter atmospheric flows and validate it on the Heng et al. (2011) reference benchmark. We then present high resolution global models of HD209458b, with horizontal resolutions of T85 (128x256) and T127 (192x384). The barotropic instability phenomenology found in $beta$-plane simulations is not reproduced in these global models, despite comparably high resolutions. Nevertheless, high resolution models do exhibit additional flow variability on long timescales (of order 100 planet days or more), which is absent from the lower resolution models. It manifests as a breakdown of north-south symmetry of the equatorial wind. From post-processing the atmospheric flows at various resolutions (assuming a cloud-free situation), we show that the stronger flow variability achieved at high resolution does not translate into noticeably stronger dayside infrared flux variability. More generally, our results suggest that high horizontal resolutions are not required to capture the key features of hot Jupiter atmospheric flows.
We present evidence for a correlation between the observed properties of hot Jupiter emission spectra and the activity levels of the host stars measured using Ca II H & K emission lines. We find that planets with dayside emission spectra that are wel l-described by standard 1D atmosphere models with water in absorption (HD 189733, TrES-1, TrES-3, WASP-4) orbit chromospherically active stars, while planets with emission spectra that are consistent with the presence of a strong high-altitude temperature inversion and water in emission orbit quieter stars. We estimate that active G and K stars have Lyman alpha fluxes that are typically a factor of 4-7 times higher than quiet stars with analogous spectral types, and propose that the increased UV flux received by planets orbiting active stars destroys the compounds responsible for the formation of the observed temperature
We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.
Observations of scattered light and thermal emission from hot Jupiter exoplanets have suggested the presence of inhomogeneous aerosols in their atmospheres. 3D general circulation models (GCMs) that attempt to model the effects of aerosols have been developed to understand the physical processes that underlie their dynamical structures. In this work, we investigate how different approaches to aerosol modeling in GCMs of hot Jupiters affect high-resolution thermal emission spectra throughout the duration of the planets orbit. Using results from a GCM with temperature-dependent cloud formation, we calculate spectra of a representative hot Jupiter with different assumptions regarding the vertical extent and thickness of clouds. We then compare these spectra to models in which clouds are absent or simply post-processed (i.e., added subsequently to the completed clear model). We show that the temperature-dependent treatment of clouds in the GCM produces high-resolution emission spectra that are markedly different from the clear and post-processed cases -- both in the continuum flux levels and line profiles -- and that increasing the vertical extent and thickness of clouds leads to bigger changes in these features. We evaluate the net Doppler shifts of the spectra induced by global winds and the planets rotation and show that they are strongly phase-dependent, especially for models with thicker and more extended clouds. This work further demonstrates the importance of radiative feedback in cloudy atmospheric models of hot Jupiters, as this can have a significant impact on interpreting spectroscopic observations of exoplanet atmospheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا