ترغب بنشر مسار تعليمي؟ اضغط هنا

Results from a set of three-dimensional numerical experiments of a hot Jupiter atmosphere

243   0   0.0 ( 0 )
 نشر من قبل Nathan Mayne Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.



قيم البحث

اقرأ أيضاً

We present results from a set of simulations using a fully coupled three-dimensional (3D) chemistry-radiation-hydrodynamics model and investigate the effect of transport of chemical species by the large-scale atmospheric flow in hot Jupiter atmospher es. We couple a flexible chemical kinetics scheme to the Met Office Unified Model which enables the study of the interaction of chemistry, radiative transfer and fluid dynamics. We use a newly-released reduced chemical network comprising 30 chemical species that has been specifically developed for application in 3D atmosphere models. We simulate the atmospheres of the well-studied hot Jupiters HD~209458b and HD~189733b which both have dayside--nightside temperature contrasts of several hundred Kelvin and superrotating equatorial jets. We find qualitatively quite different chemical structures between the two planets, particularly for methane (CH$_4$), when advection of chemical species is included. Our results show that consideration of 3D chemical transport is vital in understanding the chemical composition of hot Jupiter atmospheres. 3D mixing leads to significant changes in the abundances of absorbing gas-phase species compared with what would be expected by assuming local chemical equilibrium, or from models including 1D - and even 2D - chemical mixing. We find that CH$_4$, carbon dioxide (CO$_2$) and ammonia (NH$_3$) are particularly interesting as 3D mixing of these species leads to prominent signatures of out-of-equilibrium chemistry in the transmission and emission spectra, detectable with near-future instruments.
112 - Elyar Sedaghati 2017
As an exoplanet transits its host star, some of the light from the star is absorbed by the atoms and molecules in the planets atmosphere, causing the planet to seem bigger; plotting the planets observed size as a function of the wavelength of the lig ht produces a transmission spectrum. Measuring the tiny variations in the transmission spectrum, together with atmospheric modelling, then gives clues to the properties of the exoplanets atmosphere. Chemical species composed of light elements$-$such as hydrogen, oxygen, carbon, sodium and potassium$-$have in this way been detected in the atmospheres of several hot giant exoplanets, but molecules composed of heavier elements have thus far proved elusive. Nonetheless, it has been predicted that metal oxides such as titanium oxide (TiO) and vanadium oxide occur in the observable regions of the very hottest exoplanetary atmospheres, causing thermal
We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectr a in general. We find that carbon dioxide absorption at 4.4 and 15 microns is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the 3D atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the day side, their abundances can be considerably reduced on the cooler planetary limb. However, given the predicted limb temperatures and TiO abundances, the models optical opacity is too high. For HD 189733b we find a good match with some infrared data sets and constrain the altitude of a postulated haze layer. For this planet, substantial differences can exist between the transmission spectra of the leading and trailing hemispheres, which is an excellent probe of carbon chemistry. In thermochemical equilibrium, the cooler leading hemisphere is methane-dominated, and the hotter trailing hemisphere is CO-dominated, but these differences may be eliminated by non-equilibrium chemistry due to vertical mixing. It may be possible to constrain the carbon chemistry of this planet, and its spatial variation, with JWST.
High resolution spectroscopy has opened the way for new, detailed study of exoplanet atmospheres. There is evidence that this technique can be sensitive to the complex, three-dimensional (3D) atmospheric structure of these planets. In this work, we p erform cross correlation analysis on high resolution (R~100,000) CRIRES/VLT emission spectra of the Hot Jupiter HD 209458b. We generate template emission spectra from a 3D atmospheric circulation model of the planet, accounting for temperature structure and atmospheric motions---winds and planetary rotation---missed by spectra calculated from one-dimensional models. In this first-of-its-kind analysis, we find that using template spectra generated from a 3D model produces a more significant detection (6.9 sigma) of the planets signal than any of the hundreds of one-dimensional models we tested (maximum of 5.1 sigma). We recover the planets thermal emission, its orbital motion, and the presence of CO in its atmosphere at high significance. Additionally, we analyzed the relative influences of 3D temperature and chemical structures in this improved detection, including the contributions from CO and H2O, as well as the role of atmospheric Doppler signatures from winds and rotation. This work shows that the Hot Jupiters 3D atmospheric structure has a first-order influence on its emission spectra at high resolution and motivates the use of multi-dimensional atmospheric models in high-resolution spectral analysis.
We present the discovery of TOI-1518b -- an ultra-hot Jupiter orbiting a bright star $V = 8.95$. The transiting planet is confirmed using high-resolution optical transmission spectra from EXPRES. It is inflated, with $R_p = 1.875pm0.053,R_{rm J}$, an d exhibits several interesting properties, including a misaligned orbit (${240.34^{+0.93}_{-0.98}}$ degrees) and nearly grazing transit ($b =0.9036^{+0.0061}_{-0.0053}$). The planet orbits a fast-rotating F0 host star ($T_{mathrm{eff}} simeq 7300$ K) in 1.9 days and experiences intense irradiation. Notably, the TESS data show a clear secondary eclipse with a depth of $364pm28$ ppm and a significant phase curve signal, from which we obtain a relative day-night planetary flux difference of roughly 320 ppm and a 5.2$sigma$ detection of ellipsoidal distortion on the host star. Prompted by recent detections of atomic and ionized species in ultra-hot Jupiter atmospheres, we conduct an atmospheric cross-correlation analysis. We detect neutral iron (${5.2sigma}$), at $K_p = 157^{+68}_{-44}$ km s$^{-1}$ and $V_{rm sys} = -16^{+2}_{-4}$ km s$^{-1}$, adding another object to the small sample of highly irradiated gas-giant planets with Fe detections in transmission. Detections so far favor particularly inflated gas giants with radii $gtrsim 1.78,R_{rm J}$; although this may be due to observational bias. With an equilibrium temperature of $T_{rm eq}=2492pm38$ K and a measured dayside brightness temperature of $3237pm59$ K (assuming zero geometric albedo), TOI-1518b is a promising candidate for future emission spectroscopy to probe for a thermal inversion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا