ﻻ يوجد ملخص باللغة العربية
We study the production of light elements (Z<20) in the ejecta of binary neutron star mergers by combining detailed nucleosynthesis calculations with the outcome of numerical relativity merger simulations. We explore different microphysical equations of state and binary mass ratios, and find that hydrogen and helium are the most abundant light elements. For both elements, the decay of free neutrons is the driving nuclear reaction. Hydrogen is produced in extremely fast expanding ejecta while helium is synthesized in association with heavy r-process elements. By computing synthetic spectra, we find that the possibility of detecting hydrogen and helium features in kilonova spectra is very unlikely.
The coalescence of double neutron star (NS-NS) and black hole (BH)-NS binaries are prime sources of gravitational waves (GW) for Advanced LIGO/Virgo and future ground-based detectors. Neutron-rich matter released from such events undergo rapid neutro
Multi-messenger astronomy received a great boost following the discovery of kilonova AT2017gfo, the optical counterpart of the gravitational wave source GW170817 associated with the short gamma-ray burst GRB 170817A. AT2017gfo was the first kilonova
The detailed observations of GW170817 proved for the first time directly that neutron star mergers are a major production site of heavy elements. The observations could be fit by a number of simulations that qualitatively agree, but can quantitativel
Due to their production sites, as well as to how they are processed and destroyed in stars, the light elements are excellent tools to investigate a number of crucial issues in modern astrophysics: from stellar structure and non-standard processes in
In this review, we first reassess the supernova remnant paradigm for the origin of galactic cosmic rays in the light of recent cosmic-ray data acquired by the Voyager 1 spacecraft. We then describe the theory of light element nucleosynthesis by nucle