ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle acceleration by supernova shocks and spallogenic nucleosynthesis of light elements

64   0   0.0 ( 0 )
 نشر من قبل Vincent Tatischeff
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this review, we first reassess the supernova remnant paradigm for the origin of galactic cosmic rays in the light of recent cosmic-ray data acquired by the Voyager 1 spacecraft. We then describe the theory of light element nucleosynthesis by nuclear interaction of cosmic rays with the interstellar medium and outline the problem of explaining the measured Be abundances in old halo stars of low metallicity with the standard model for the galactic cosmic ray origin. We then discuss the various cosmic ray models proposed in the literature to account for the measured evolution of the light elements in the Milky Way, and point out the difficulties that they all encounter. Amongst all possibilities, it seems to us that the superbubble model provides the most satisfactory explanation for these observations.

قيم البحث

اقرأ أيضاً

We briefly discuss models of energetic particle acceleration by supernova shock in active starforming regions at different stages of their evolution. Strong shocks may strongly amplify magnetic fields due to cosmic ray driven instabilities. We discus s the magnetic field amplification emphasizing the role of the long-wavelength instabilities. Supernova shock propagating in the vicinity of a powerful stellar wind in a young stellar cluster is argued to increase the maximal CR energies at a given evolution stage of supernova remnant (SNR) and can convert a sizeable fraction of the kinetic energy release into energetic particles.
106 - T. Yoshida 2006
Light element synthesis in supernovae through neutrino-nucleus interactions, i.e., the nu-process, is affected by neutrino oscillations in the supernova environment. There is a resonance of 13-mixing in the O/C layer, which increases the rates of cha rged-current nu-process reactions in the outer He-rich layer. The yields of 7Li and 11B increase by about a factor of 1.9 and 1.3, respectively, for a normal mass hierarchy and an adiabatic 13-mixing resonance, compared to those without neutrino oscillations. In the case of an inverted mass hierarchy and a non-adiabatic 13-mixing resonance, the increase in the 7Li and 11B yields is much smaller. Observations of the 7Li/11B ratio in stars showing signs of supernova enrichment could thus provide a unique test of neutrino oscillations and constrain their parameters and the mass hierarchy.
We present a bolometric light curve model of Type IIn supernovae powered by supernova ejecta colliding with a circumstellar medium. We estimate the conversion efficiency of the ejectas kinetic energy to radiation at the reverse and forward shocks and find that a large density contrast makes a difference in the efficiency. The emission from the reverse shock can maintain high efficiency for a long time, and becomes important at the late phase of the light curve. We first construct a semi-analytical model that is applicable to the late phase of the light curve when the diffusion time of photons in the shocked region becomes negligible. We further develop radiation transfer simulations that incorporate these physical processes into the light curve. The numerical calculations predict light curves at early phases, which are testable by present and future short-cadence surveys. We compare our model with the bolometric light curve constructed from observations for a type IIn supernova 2005ip. Due to the reduced efficiency at the forward shock, we find from our model that the mass-loss rate of the progenitor star was $approx 1times 10^{-2} {rm M_odot yr^{-1}}$ for a wind velocity of $100 {rm km s^{-1}}$, an order of magnitude higher compared to previous work that used simple assumptions of the efficiency. This highlights the importance of taking these two components into account when extracting the physical parameters from observations.
Supernova remnants (SNRs) are believed to accelerate particles up to high energies through the mechanism of diffusive shock acceleration (DSA). Except for direct plasma simulations, all modeling efforts must rely on a given form of the diffusion coef ficient, a key parameter that embodies the interactions of energetic charged particles with the magnetic turbulence. The so-called Bohm limit is commonly employed. In this paper we revisit the question of acceleration at perpendicular shocks, by employing a realistic model of perpendicular diffusion. Our coefficient reduces to a power-law in momentum for low momenta (of index $alpha$), but becomes independent of the particle momentum at high momenta (reaching a constant value $kappa_{infty}$ above some characteristic momentum $p_{rm c}$). We first provide simple analytical expressions of the maximum momentum that can be reached at a given time with this coefficient. Then we perform time-dependent numerical simulations to investigate the shape of the particle distribution that can be obtained when the particle pressure back-reacts on the flow. We observe that, for a given index $alpha$ and injection level, the shock modifications are similar for different possible values of $p_{rm c}$, whereas the particle spectra differ markedly. Of particular interest, low values of $p_{rm c}$ tend to remove the concavity once thought to be typical of non-linear DSA, and result in steep spectra, as required by recent high-energy observations of Galactic SNRs.
According to the most popular model for the origin of cosmic rays (CRs), supernova remnants (SNRs) are the site where CRs are accelerated. Observations across the electromagnetic spectrum support this picture through the detection of non-thermal emis sion that is compatible with being synchrotron or inverse Compton radiation from high energy electrons, or pion decay due to proton-proton interactions. These observations of growing quantity and quality promise to unveil many aspects of CRs acceleration and require more and more accurate tools for their interpretation. Here, we show how multi-dimensional MHD models of SNRs, including the effects on shock dynamics due to back-reaction of accelerated CRs and the synthesis of non-thermal emission, turned out to be very useful to investigate the signatures of CRs acceleration and to put constraints on the acceleration mechanism of high energy particles. These models have been used to interpret accurately observations of SNRs in various bands (radio, X-ray and $gamma$-ray) and to extract from them key information about CRs acceleration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا