ترغب بنشر مسار تعليمي؟ اضغط هنا

Personalized TV Recommendation: Fusing User Behavior and Preferences

96   0   0.0 ( 0 )
 نشر من قبل Sheng-Chieh Lin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a two-stage ranking approach for recommending linear TV programs. The proposed approach first leverages user viewing patterns regarding time and TV channels to identify potential candidates for recommendation and then further leverages user preferences to rank these candidates given textual information about programs. To evaluate the method, we conduct empirical studies on a real-world TV dataset, the results of which demonstrate the superior performance of our model in terms of both recommendation accuracy and time efficiency.



قيم البحث

اقرأ أيضاً

In this paper, we propose a novel optimization criterion that leverages features of the skew normal distribution to better model the problem of personalized recommendation. Specifically, the developed criterion borrows the concept and the flexibility of the skew normal distribution, based on which three hyperparameters are attached to the optimization criterion. Furthermore, from a theoretical point of view, we not only establish the relation between the maximization of the proposed criterion and the shape parameter in the skew normal distribution, but also provide the analogies and asymptotic analysis of the proposed criterion to maximization of the area under the ROC curve. Experimental results conducted on a range of large-scale real-world datasets show that our model significantly outperforms the state of the art and yields consistently best performance on all tested datasets.
101 - Tao Qi , Fangzhao Wu , Chuhan Wu 2021
User interest modeling is critical for personalized news recommendation. Existing news recommendation methods usually learn a single user embedding for each user from their previous behaviors to represent their overall interest. However, user interes t is usually diverse and multi-grained, which is difficult to be accurately modeled by a single user embedding. In this paper, we propose a news recommendation method with hierarchical user interest modeling, named HieRec. Instead of a single user embedding, in our method each user is represented in a hierarchical interest tree to better capture their diverse and multi-grained interest in news. We use a three-level hierarchy to represent 1) overall user interest; 2) user interest in coarse-grained topics like sports; and 3) user interest in fine-grained topics like football. Moreover, we propose a hierarchical user interest matching framework to match candidate news with different levels of user interest for more accurate user interest targeting. Extensive experiments on two real-world datasets validate our method can effectively improve the performance of user modeling for personalized news recommendation.
175 - Xu Chen , Ya Zhang , Ivor Tsang 2020
Cross domain recommendation (CDR) has been proposed to tackle the data sparsity problem in recommender systems. This paper focuses on a common scenario for CDR where different domains share the same set of users but no overlapping items. The majority of recent methods have explored shared-user representation to transfer knowledge across different domains. However, the idea of shared-user representation resorts to learn the overlapped properties of user preferences across different domains and suppresses the domain-specific properties of user preferences. In this paper, we attempt to learn both properties of user preferences for CDR, i.e. capturing both the overlapped and domain-specific properties. In particular, we assume that each users preferences in one domain can be expressed by the other one, and these preferences can be mutually converted to each other with the so-called equivalent transformations. Based on this assumption, we propose an equivalent transformation learner (ETL) which models the joint distribution of user behaviors across different domains. The equivalent transformations in ETL relax the idea of shared-user representation and allow the learned preferences in different domains to have the capacity of preserving the domain-specific properties as well as the overlapped properties. Extensive experiments on three public benchmarks demonstrate the effectiveness of ETL compared with recent state-of-the-art methods.
An effective email search engine can facilitate users search tasks and improve their communication efficiency. Users could have varied preferences on various ranking signals of an email, such as relevance and recency based on their tasks at hand and even their jobs. Thus a uniform matching pattern is not optimal for all users. Instead, an effective email ranker should conduct personalized ranking by taking users characteristics into account. Existing studies have explored user characteristics from various angles to make email search results personalized. However, little attention has been given to users search history for characterizing users. Although users historical behaviors have been shown to be beneficial as context in Web search, their effect in email search has not been studied and remains unknown. Given these observations, we propose to leverage user search history as query context to characterize users and build a context-aware ranking model for email search. In contrast to previous context-dependent ranking techniques that are based on raw texts, we use ranking features in the search history. This frees us from potential privacy leakage while giving a better generalization power to unseen users. Accordingly, we propose a context-dependent neural ranking model (CNRM) that encodes the ranking features in users search history as query context and show that it can significantly outperform the baseline neural model without using the context. We also investigate the benefit of the query context vectors obtained from CNRM on the state-of-the-art learning-to-rank model LambdaMart by clustering the vectors and incorporating the cluster information. Experimental results show that significantly better results can be achieved on LambdaMart as well, indicating that the query clusters can characterize different users and effectively turn the ranking model personalized.
News recommendation is critical for personalized news access. Existing news recommendation methods usually infer users personal interest based on their historical clicked news, and train the news recommendation models by predicting future news clicks . A core assumption behind these methods is that news click behaviors can indicate user interest. However, in practical scenarios, beyond the relevance between user interest and news content, the news click behaviors may also be affected by other factors, such as the bias of news presentation in the online platform. For example, news with higher positions and larger sizes are usually more likely to be clicked. The bias of clicked news may bring noises to user interest modeling and model training, which may hurt the performance of the news recommendation model. In this paper, we propose a bias-aware personalized news recommendation method named DebiasRec, which can handle the bias information for more accurate user interest inference and model training. The core of our method includes a bias representation module, a bias-aware user modeling module, and a bias-aware click prediction module. The bias representation module is used to model different kinds of news bias and their interactions to capture their joint effect on click behaviors. The bias-aware user modeling module aims to infer users debiased interest from the clicked news articles by using their bias information to calibrate the interest model. The bias-aware click prediction module is used to train a debiased news recommendation model from the biased click behaviors, where the click score is decomposed into a preference score indicating users interest in the news content and a news bias score inferred from its different bias features. Experiments on two real-world datasets show that our method can effectively improve the performance of news recommendation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا