ترغب بنشر مسار تعليمي؟ اضغط هنا

GrateTile: Efficient Sparse Tensor Tiling for CNN Processing

409   0   0.0 ( 0 )
 نشر من قبل Trista Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose GrateTile, an efficient, hardwarefriendly data storage scheme for sparse CNN feature maps (activations). It divides data into uneven-sized subtensors and, with small indexing overhead, stores them in a compressed yet randomly accessible format. This design enables modern CNN accelerators to fetch and decompressed sub-tensors on-the-fly in a tiled processing manner. GrateTile is suitable for architectures that favor aligned, coalesced data access, and only requires minimal changes to the overall architectural design. We simulate GrateTile with state-of-the-art CNNs and show an average of 55% DRAM bandwidth reduction while using only 0.6% of feature map size for indexing storage.



قيم البحث

اقرأ أيضاً

Convolutional neural network (CNN) inference on mobile devices demands efficient hardware acceleration of low-precision (INT8) general matrix multiplication (GEMM). Exploiting data sparsity is a common approach to further accelerate GEMM for CNN infe rence, and in particular, structural sparsity has the advantages of predictable load balancing and very low index overhead. In this paper, we address a key architectural challenge with structural sparsity: how to provide support for a range of sparsity levels while maintaining high utilization of the hardware. We describe a time unrolled formulation of variable density-bound block (VDBB) sparsity that allows for a configurable number of non-zero elements per block, at constant utilization. We then describe a systolic array microarchitecture that implements this scheme, with two data reuse optimizations. Firstly, we increase reuse in both operands and partial products by increasing the number of MACs per PE. Secondly, we introduce a novel approach of moving the IM2COL transform into the hardware, which allows us to achieve a 3x data bandwidth expansion just before the operands are consumed by the datapath, reducing the SRAM power consumption. The optimizations for weight sparsity, activation sparsity and data reuse are all interrelated and therefore the optimal combination is not obvious. Therefore, we perform an design space evaluation to find the pareto-optimal design characteristics. The resulting design achieves 16.8 TOPS/W in 16nm with modest 50% model sparsity and scales with model sparsity up to 55.7TOPS/W at 87.5%. As well as successfully demonstrating the variable DBB technique, this result significantly outperforms previously reported sparse CNN accelerators.
Sparse neural networks can greatly facilitate the deployment of neural networks on resource-constrained platforms as they offer compact model sizes while retaining inference accuracy. Because of the sparsity in parameter matrices, sparse neural netwo rks can, in principle, be exploited in accelerator architectures for improved energy-efficiency and latency. However, to realize these improvements in practice, there is a need to explore sparsity-aware hardware-software co-design. In this paper, we propose a novel silicon photonics-based sparse neural network inference accelerator called SONIC. Our experimental analysis shows that SONIC can achieve up to 5.8x better performance-per-watt and 8.4x lower energy-per-bit than state-of-the-art sparse electronic neural network accelerators; and up to 13.8x better performance-per-watt and 27.6x lower energy-per-bit than the best known photonic neural network accelerators.
Training deep learning networks involves continuous weight updates across the various layers of the deep network while using a backpropagation algorithm (BP). This results in expensive computation overheads during training. Consequently, most deep le arning accelerators today employ pre-trained weights and focus only on improving the design of the inference phase. The recent trend is to build a complete deep learning accelerator by incorporating the training module. Such efforts require an ultra-fast chip architecture for executing the BP algorithm. In this article, we propose a novel photonics-based backpropagation accelerator for high performance deep learning training. We present the design for a convolutional neural network, BPLight-CNN, which incorporates the silicon photonics-based backpropagation accelerator. BPLight-CNN is a first-of-its-kind photonic and memristor-based CNN architecture for end-to-end training and prediction. We evaluate BPLight-CNN using a photonic CAD framework (IPKISS) on deep learning benchmark models including LeNet and VGG-Net. The proposed design achieves (i) at least 34x speedup, 34x improvement in computational efficiency, and 38.5x energy savings, during training; and (ii) 29x speedup, 31x improvement in computational efficiency, and 38.7x improvement in energy savings, during inference compared to the state-of-the-art designs. All these comparisons are done at a 16-bit resolution; and BPLight-CNN achieves these improvements at a cost of approximately 6% lower accuracy compared to the state-of-the-art.
Tensor completion refers to the task of estimating the missing data from an incomplete measurement or observation, which is a core problem frequently arising from the areas of big data analysis, computer vision, and network engineering. Due to the mu ltidimensional nature of high-order tensors, the matrix approaches, e.g., matrix factorization and direct matricization of tensors, are often not ideal for tensor completion and recovery. In this paper, we introduce a unified low-rank and sparse enhanced Tucker decomposition model for tensor completion. Our model possesses a sparse regularization term to promote a sparse core tensor of the Tucker decomposition, which is beneficial for tensor data compression. Moreover, we enforce low-rank regularization terms on factor matrices of the Tucker decomposition for inducing the low-rankness of the tensor with a cheap computational cost. Numerically, we propose a customized ADMM with enough easy subproblems to solve the underlying model. It is remarkable that our model is able to deal with different types of real-world data sets, since it exploits the potential periodicity and inherent correlation properties appeared in tensors. A series of computational experiments on real-world data sets, including internet traffic data sets, color images, and face recognition, demonstrate that our model performs better than many existing state-of-the-art matricization and tensorization approaches in terms of achieving higher recovery accuracy.
Accurate capacitance extraction is becoming more important for designing integrated circuits under advanced process technology. The pattern matching based full-chip extraction methodology delivers fast computational speed, but suffers from large erro r, and tedious efforts on building capacitance models of the increasing structure patterns. In this work, we propose an effective method for building convolutional neural network (CNN) based capacitance models (called CNN-Cap) for two-dimensional (2-D) structures in full-chip capacitance extraction. With a novel grid-based data representation, the proposed method is able to model the pattern with a variable number of conductors, so that largely reduce the number of patterns. Based on the ability of ResNet architecture on capturing spatial information and the proposed training skills, the obtained CNN-Cap exhibits much better performance over the multilayer perception neural network based capacitance model while being more versatile. Extensive experiments on a 55nm and a 15nm process technologies have demonstrated that the error of total capacitance produced with CNN-Cap is always within 1.3% and the error of produced coupling capacitance is less than 10% in over 99.5% probability. CNN-Cap runs more than 4000X faster than 2-D field solver on a GPU server, while it consumes negligible memory compared to the look-up table based capacitance model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا