ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong scattering and parallel guiding of ultracold neutrons

135   0   0.0 ( 0 )
 نشر من قبل Zhehui Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For ultracold neutrons with a kinetic energy below 10 neV, strong scattering, characterized by $2pi l_{c} / lambdaleq 1$, can be obtained in metamaterials of C and $^7$Li. Here $l_{c}$ and $lambda$ are the coherent scattering mean free path and the neutron wavelength, respectively. UCN interferometry and high-resolution spectroscopy (nano-electronvolt to pico-electronvolt resolution) in parallel waveguide arrays of neutronic metamaterials are given as examples of new experimental possibilities.



قيم البحث

اقرأ أيضاً

We installed a source for ultracold neutrons at a new, dedicated spallation target at TRIUMF. The source was originally developed in Japan and uses a superfluid-helium converter cooled to 0.9$,$K. During an extensive test campaign in November 2017, w e extracted up to 325000 ultracold neutrons after a one-minute irradiation of the target, over three times more than previously achieved with this source. The corresponding ultracold-neutron density in the whole production and guide volume is 5.3$,$cm$^{-3}$. The storage lifetime of ultracold neutrons in the source was initially 37$,$s and dropped to 24$,$s during the eighteen days of operation. During continuous irradiation of the spallation target, we were able to detect a sustained ultracold-neutron rate of up to 1500$,$s$^{-1}$. Simulations of UCN production, UCN transport, temperature-dependent UCN yield, and temperature-dependent storage lifetime show excellent agreement with the experimental data and confirm that the ultracold-neutron-upscattering rate in superfluid helium is proportional to $T^7$.
119 - S. Afach , N.J. Ayres , C.A. Baker 2015
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have inve stigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.
Ultracold neutrons (UCN) with kinetic energies up to 300 neV can be stored in material or magnetic confinements for hundreds of seconds. This makes them a very useful tool for probing fundamental symmetries of nature, by searching for charge-parity v iolation by a neutron electric dipole moment, and yielding important parameters for Big Bang nucleosynthesis, e.g. in neutron-lifetime measurements. Further increasing the intensity of UCN sources is crucial for next-generation experiments. Advanced Monte Carlo (MC) simulation codes are important in optimization of neutron optics of UCN sources and of experiments, but also in estimation of systematic effects, and in bench-marking of analysis codes. Here we will give a short overview of recent MC simulation activities in this field.
This work focuses on the control and understanding of a gravitationally interacting elementary quantum system. It offers a new way of looking at gravitation based on quantum interference: an ultracold neutron, a quantum particle, as an object and as a tool. The ultracold neutron as a tool reflects from a mirror in well-defined quantum states in the gravity potential of the earth allowing to apply the concept of gravity resonance spectroscopy (GRS). GRS relies on frequency measurements, which provide a spectacular sensitivity.
A multilayer surface detector for ultracold neutrons (UCNs) is described. The top $^{10}$B layer is exposed to the vacuum chamber and directly captures UCNs. The ZnS:Ag layer beneath the $^{10}$B layer is a few microns thick, which is sufficient to d etect the charged particles from the $^{10}$B(n,$alpha$)$^7$Li neutron-capture reaction, while thin enough so that ample light due to $alpha$ and $^7$Li escapes for detection by photomultiplier tubes. One-hundred-nm thick $^{10}$B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials and others. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparisons with other existing $^3$He and $^{10}$B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا