ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Depolarization of Ultracold Neutrons: Comparison with Data

127   0   0.0 ( 0 )
 نشر من قبل Philip Harris
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.



قيم البحث

اقرأ أيضاً

This work focuses on the control and understanding of a gravitationally interacting elementary quantum system. It offers a new way of looking at gravitation based on quantum interference: an ultracold neutron, a quantum particle, as an object and as a tool. The ultracold neutron as a tool reflects from a mirror in well-defined quantum states in the gravity potential of the earth allowing to apply the concept of gravity resonance spectroscopy (GRS). GRS relies on frequency measurements, which provide a spectacular sensitivity.
The UCN$tau$ experiment is designed to measure the lifetime $tau_{n}$ of the free neutron by trapping ultracold neutrons (UCN) in a magneto-gravitational trap. An asymmetric bowl-shaped NdFeB magnet Halbach array confines low-field-seeking UCN within the apparatus, and a set of electromagnetic coils in a toroidal geometry provide a background holding field to eliminate depolarization-induced UCN loss caused by magnetic field nodes. We present a measurement of the storage time $tau_{store}$ of the trap by storing UCN for various times, and counting the survivors. The data are consistent with a single exponential decay, and we find $tau_{store}=860pm19$ s: within $1 sigma$ of current global averages for $tau_{n}$. The storage time with the holding field deactiveated is found to be $tau_{store}=470 pm 160$ s; this decreased storage time is due to the loss of UCN which undergo Majorana spin-flips while being stored. We discuss plans to increase the statistical sensitivity of the measurement and investigate potential systematic effects.
We installed a source for ultracold neutrons at a new, dedicated spallation target at TRIUMF. The source was originally developed in Japan and uses a superfluid-helium converter cooled to 0.9$,$K. During an extensive test campaign in November 2017, w e extracted up to 325000 ultracold neutrons after a one-minute irradiation of the target, over three times more than previously achieved with this source. The corresponding ultracold-neutron density in the whole production and guide volume is 5.3$,$cm$^{-3}$. The storage lifetime of ultracold neutrons in the source was initially 37$,$s and dropped to 24$,$s during the eighteen days of operation. During continuous irradiation of the spallation target, we were able to detect a sustained ultracold-neutron rate of up to 1500$,$s$^{-1}$. Simulations of UCN production, UCN transport, temperature-dependent UCN yield, and temperature-dependent storage lifetime show excellent agreement with the experimental data and confirm that the ultracold-neutron-upscattering rate in superfluid helium is proportional to $T^7$.
235 - S. Afach , G. Ban , G. Bison 2015
We report on the design and first tests of a device allowing for measurement of ultracold neutrons polarisation by means of the simultaneous analysis of the two spin components. The device was developed in the framework of the neutron electric dipole moment experiment at the Paul Scherrer Institute. Individual parts and the entire newly built system have been characterised with ultracold neutrons. The gain in statistical sensitivity obtained with the simultaneous spin analyser is $(18.2pm6.1)%$ relative to the former sequential analyser under nominal running conditions.
Ultracold neutrons (UCN) with kinetic energies up to 300 neV can be stored in material or magnetic confinements for hundreds of seconds. This makes them a very useful tool for probing fundamental symmetries of nature, by searching for charge-parity v iolation by a neutron electric dipole moment, and yielding important parameters for Big Bang nucleosynthesis, e.g. in neutron-lifetime measurements. Further increasing the intensity of UCN sources is crucial for next-generation experiments. Advanced Monte Carlo (MC) simulation codes are important in optimization of neutron optics of UCN sources and of experiments, but also in estimation of systematic effects, and in bench-marking of analysis codes. Here we will give a short overview of recent MC simulation activities in this field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا