ترغب بنشر مسار تعليمي؟ اضغط هنا

Unraveling the Dirac Neutrino with Cosmological and Terrestrial Detectors

79   0   0.0 ( 0 )
 نشر من قبل Michael Shamma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for testing the Dirac neutrino hypothesis by combining data from terrestrial neutrino experiments, such as tritium beta decay, with data from cosmological observations, such as the cosmic microwave background and large scale structure surveys. If the neutrinos are Dirac particles, and if the active neutrinos sterile partners were once thermalized in the early universe, then this new cosmological relic would simultaneously contribute to the effective number of relativistic species, $N_text{eff}$, and also lead to a mismatch between the cosmologically-measured effective neutrino mass sum $Sigma m_ u$ and the terrestrially-measured active neutrino mass sum $Sigma_i m_i$. We point out that specifically correlated deviations in $N_text{eff} gtrsim 3$ and $Sigma m_ u gtrsim Sigma_i m_i$ above their standard predictions could be the harbinger revealing the Dirac nature of neutrinos. We provide several benchmark examples, including Dirac leptogenesis, that predict a thermal relic population of the sterile partners, and we discuss the relevant observational prospects with current and near-future experiments. This work provides a novel approach to probe an important possibility of the origin of neutrino mass.

قيم البحث

اقرأ أيضاً

We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symme try allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multi-body kaon decays and Drell-Yan production of $W$ bosons at the LHC.
Invisible neutrino decay modes are difficult to target at laboratory experiments, and current bounds on such decays from solar neutrino and neutrino oscillation experiments are somewhat weak. It has been known for some time that Cosmology can serve a s a powerful probe of invisible neutrino decays. In this work, we show that in order for Big Bang Nucleosynthesis to be successful, the invisible neutrino decay lifetime is bounded to be $tau_ u > 10^{-3},text{s}$ at 95% CL. We revisit Cosmic Microwave Background constraints on invisible neutrino decays, and by using Planck2018 observations we find the following bound on the neutrino lifetime: $tau_ u > (1.3-0.3)times 10^{9},text{s} , left({m_ u}/{ 0.05,text{eV} }right)^3$ at $95%$ CL. We show that this bound is robust to modifications of the cosmological model, in particular that it is independent of the presence of dark radiation. We find that lifetimes relevant for Supernova observations ($tau_ u sim 10^{5},text{s}, left({m_ u}/{ 0.05,text{eV} }right)^3$) are disfavoured at more than $5,sigma$ with respect to $Lambda$CDM given the latest Planck CMB observations. Finally, we show that when including high-$ell$ Planck polarization data, neutrino lifetimes $tau_ u = (2-16)times 10^{9},text{s} , left({m_ u}/{ 0.05,text{eV} }right)^3$ are mildly preferred -- with a 1-2 $sigma$ significance -- over neutrinos being stable.
We explore the complementarity between terrestrial neutrino oscillation experiments and astrophysical/cosmological measurements in probing the existence of sterile neutrinos. We find that upcoming accelerator neutrino experiments will not improve on constraints by the time they are operational, but that reactor experiments can already probe parameter space beyond the reach of Planck. We emphasize the tension between cosmological experiments and reactor antineutrino experiments and enumerate several possibilities for resolving this tension.
We comment on the first indication of geo-neutrino events from KamLAND and on the prospects for understanding Earth energetics. Practically all models of terrestrial heat production are consistent with data within the presently limited statistics, th e fully radiogenic model being closer to the observed value ($approx 9$ geo-events). In a few years KamLAND should collect sufficient data for a clear evidence of geo-neutrinos, however discrimination among models requires a detector with the class and size of KamLAND far away from nuclear reactors. We also remark that the event ratio from Thorium and Uranium decay chains is well fixed $N(Th)/N(U) simeq 0.25$, a constraint that can be useful for determining neutrino oscillation parameters. We show that a full spectral analysis, including this constraint, further reduces the oscillation parameter space compared to an analysis with an energy threshold $E_{vis}>2.6 MeV$.
The significant neutrino flux at high rapidity at the LHC motivates dedicated forward detectors to study the properties of neutrinos at TeV energies. We investigate magnetic dipole interactions between the active neutrinos and new sterile states at e mulsion and liquid argon experiments that could be located in a future Forward Physics Facility (FPF) downstream of the ATLAS interaction point. The up-scattering of neutrinos off electrons produces an electron recoil signature that can probe new regions of parameter space at the High Luminosity LHC (HL-LHC), particularly for liquid argon detectors due to low momentum thresholds. We also consider the decay of the sterile neutrino through the dipole operator, which leads to a photon that could be displaced from the production vertex. FPF detectors can test sterile neutrino states as heavy as 1 GeV produced through the dipole portal, highlighting the use of high energy LHC neutrinos as probes of new physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا