ﻻ يوجد ملخص باللغة العربية
We consider a class of reinforcement processes, called WARMs, on tree graphs. These processes involve a parameter $alpha$ which governs the strength of the reinforcement, and a collection of Poisson processes indexed by the vertices of the graph. It has recently been proved that for any fixed bounded degree graph with Poisson firing rates that are uniformly bounded above, in the very strong reinforcement regime ($alphagg 1$ sufficiently large depending on the maximal degree), the set of edges that survive (i.e. that are reinforced infinitely often by the process) has only finite connected components. The present paper is devoted to the construction of an example in the opposite direction, that is, with the set of surviving edges having infinite connected components. Namely, we show that for each fixed $alpha>1$ one can find a regular rooted tree and firing rates that are uniformly bounded from above, for which there are infinite components almost surely. Joining such examples, we find a graph (with unbounded degrees) on which for any $alpha>1$ almost surely there are infinite connected components of surviving edges.
We study level-set percolation of the Gaussian free field on the infinite $d$-regular tree for fixed $dgeq 3$. Denoting by $h_star$ the critical value, we obtain the following results: for $h>h_star$ we derive estimates on conditional exponential mom
In invasion percolation, the edges of successively maximal weight (the outlets) divide the invasion cluster into a chain of ponds separated by outlets. On the regular tree, the ponds are shown to grow exponentially, with law of large numbers, central
In this paper we consider the geodesic tree in exponential last passage percolation. We show that for a large class of initial conditions around the origin, the line-to-point geodesic that terminates in a cylinder of width $o(N^{2/3})$ and length $o(
We consider the zero-average Gaussian free field on a certain class of finite $d$-regular graphs for fixed $dgeq 3$. This class includes $d$-regular expanders of large girth and typical realisations of random $d$-regular graphs. We show that the leve
Large deviations in the context of first-passage percolation was first studied in the early 1980s by Grimmett and Kesten, and has since been revisited in a variety of studies. However, none of these studies provides a precise relation between the exi