ﻻ يوجد ملخص باللغة العربية
We consider the zero-average Gaussian free field on a certain class of finite $d$-regular graphs for fixed $dgeq 3$. This class includes $d$-regular expanders of large girth and typical realisations of random $d$-regular graphs. We show that the level set of the zero-average Gaussian free field above level $h$ exhibits a phase transition at level $h_star$, which agrees with the critical value for level-set percolation of the Gaussian free field on the infinite $d$-regular tree. More precisely, we show that, with probability tending to one as the size of the finite graphs tends to infinity, the level set above level $h$ does not contain any connected component of larger than logarithmic size whenever $h>h_star$, and on the contrary, whenever $h<h_star$, a linear fraction of the vertices is contained in connected components of the level set above level $h$ having a size of at least a small fractional power of the total size of the graph. It remains open whether in the supercritical phase $h<h_star$, as the size of the graphs tends to infinity, one observes the emergence of a (potentially unique) giant connected component of the level set above level $h$. The proofs in this article make use of results from the accompanying paper [AC1].
We study level-set percolation of the Gaussian free field on the infinite $d$-regular tree for fixed $dgeq 3$. Denoting by $h_star$ the critical value, we obtain the following results: for $h>h_star$ we derive estimates on conditional exponential mom
The nature of level set percolation in the two-dimension Gaussian Free Field has been an elusive question. Using a loop-model mapping, we show that there is a nontrivial percolation transition, and characterize the critical point. In particular, the
In this paper we introduce the two-sided level-set for the two-dimensional discrete Gaussian free field. Then we investigate the chemical distance for the two-sided level-set percolation. Our result shows that the chemical distance should have dimens
For massless vertex-transitive transient graphs, the percolation phase transition for the level sets of the Gaussian free field on the associated continuous cable system is particularly well understood, and in particular the associated critical param
We consider the discrete Gaussian Free Field (DGFF) in scaled-up (square-lattic