ترغب بنشر مسار تعليمي؟ اضغط هنا

Kitaev Spin Liquid Candidate OsxCl3 Comprised of Honeycomb Nano-Domains

94   0   0.0 ( 0 )
 نشر من قبل Kota Kataoka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An osmium chloride with the chemical formula of OsxCl3 (x = 0.81) was synthesized and its crystal structure and thermodynamic properties were investigated. OsxCl3 crystallizes in a layered CdCl2-type structure with the triangular lattice partially occupied by Os ions on average. However, on microscopic length scales, the triangular lattice is composed of nano-domains with a honeycomb arrangement of Os ions, as observed by electron microscopy and Raman scattering experiments. Magnetization and heat capacity measurements revealed an absence of magnetic long-range order down to 0.08 K, while a broad peak in heat capacity at 0.15 K may indicate a short-range order in the local honeycomb lattice. OsxCl3 may exhibit certain aspects of the Kitaev spin liquid that are expected for a perfect honeycomb lattice of osmium trichloride.

قيم البحث

اقرأ أيضاً

The ruthenium halide $alpha$-RuCl$_{3}$ is a promising candidate for a Kitaev spin liquid. However, the microscopic model describing $alpha$-RuCl$_{3}$ is still debated partly because of a lack of analogue materials for $alpha$-RuCl$_{3}$, which prev ents tracking of electronic properties as functions of controlled interaction parameters. Here, we report a successful synthesis of RuBr$_{3}$. The material RuBr$_{3}$~possesses BiI$_3$-type structure (space group: $Roverline{3}$) where Ru$^{3+}$ form an ideal honeycomb lattice. Although RuBr$_{3}$ has a negative Weiss temperature, it undergoes a zigzag antiferromagnetic transition at $T_mathrm{N}=34$ K, as does $alpha$-RuCl$_{3}$. Our analyses indicate that the Kitaev and non-Kitaev interactions can be modified in ruthenium trihalides by changing the ligand sites, which provides a new platform for exploring Kitaev spin liquids.
Recent proposals for spin-1 Kitaev materials, such as honeycomb Ni oxides with heavy elements of Bi and Sb, have shown that these compounds naturally give rise to antiferromagnetic (AFM) Kitaev couplings. Conceptual interest in such AFM Kitaev system s has been sparked by the observation of a transition to a gapless $U(1)$ spin liquid at intermediate field strengths in the AFM spin-1/2 Kitaev model. However, all hitherto known spin-1/2 Kitaev materials exhibit ferromagnetic bond-directional exchanges. Here we discuss the physics of the spin-1 Kitaev model in a magnetic field and show, by extensive numerical analysis, that for AFM couplings it exhibits an extended gapless quantum spin liquid at intermediate field strengths. The close analogy to its spin-1/2 counterpart suggests that this gapless spin liquid is a $U(1)$ spin liquid with a neutral Fermi surface, that gives rise to enhanced thermal transport signatures.
We investigate the generic features of the low energy dynamical spin structure factor of the Kitaev honeycomb quantum spin liquid perturbed away from its exact soluble limit by generic symmetry-allowed exchange couplings. We find that the spin gap pe rsists in the Kitaev-Heisenberg model, but generally vanishes provided more generic symmetry-allowed interactions exist. We formulate the generic expansion of the spin operator in terms of fractionalized Majorana fermion operators according to the symmetry enriched topological order of the Kitaev spin liquid, described by its projective symmetry group. The dynamical spin structure factor displays power-law scaling bounded by Dirac cones in the vicinity of the $Gamma$, $K$ and $K$ points of the Brillouin zone, rather than the spin gap found for the exactly soluble point.
Motivated by recent synthesis of the hyper-honeycomb material $beta$-$mathrm{Li_2 Ir O_3}$, we study the dynamical structure factor (DSF) of the corresponding 3D Kitaev quantum spin-liquid (QSL), whose fractionalised degrees of freedom are Majorana f ermions and emergent flux-loops. Properties of this 3D model are known to differ in important ways from those of its 2D counterpart -- it has finite-temperature phase transition, as well as distinct features in Raman response. We show, however, that the qualitative behaviour of the DSF is broadly dimension-independent. Characteristics of the 3D DSF include a response gap even in the gapless QSL phase and an energy dependence deriving from the Majorana fermion density of states. Since the majority of the response is from states containing a single Majorana excitation, our results suggest inelastic neutron scattering as the spectroscopy of choice to illuminate the physics of Majorana fermions in Kitaev QSLs.
We study the effects of doping the Kitaev model on the honeycomb lattice where the spins interact via the bond-directional interaction $J_K$, which is known to have a quantum spin liquid as its exact ground state. The effect of hole doping is studied within the $t$-$J_K$ model on a three-leg cylinder using density-matrix renormalization group. Upon light doping, we find that the ground state of the system has quasi-long-range charge-density-wave correlations but short-range single-particle correlations. The dominant pairing channel is the even-parity superconducting pair-pair correlations with $d$-wave-like symmetry, which oscillate in sign as a function of separation with a period equal to that of the spin-density wave and two times the charge-density wave. Although these correlations fall rapidly (possibly exponentially) at long distances, this is never-the-less the first example where a pair-density wave is the strongest SC order on a bipartite lattice. Our results may be relevant to ${rm Na_2IrO_3}$ and $alpha$-${rm RuCl_3}$ upon doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا