ﻻ يوجد ملخص باللغة العربية
We report the synthesis and characterisation of polycrystalline Na$_2$RuO$_3$, a layered material in which the Ru$^{4+}$ ($4d^4$ configuration) form a honeycomb lattice. The optimal synthesis condition was found to produce a nearly ordered Na$_2$RuO$_3$ ($C2/c$ phase), as assessed from the refinement of the time-of-flight neutron powder diffraction. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetism ($chi_0 sim 1.42(2)times10^{-3}$ emu/mol Oe) with no evidence of magnetic ordering down to 1.5 K, and with an absence of dynamic magnetic correlations, as evidenced by neutron scattering spectroscopy. The intrinsic susceptibility ($chi_0$) together with the Sommerfeld coeficient of $gamma=11.7(2)$ mJ/Ru mol K$^2$ estimated from heat capacity measurements, gives an enhanced Wilson ratio of $R_Wapprox8.9(1)$, suggesting that magnetic correlations may be present in this material. While transport measurements on pressed pellets show nonmetallic behaviour, photoemission spectrocopy indicate a small but finite density of states at the Fermi energy, suggesting that the bulk material is metallic. Except for resistivity measurements, which may have been compromised by near surface and interface effects, all other probes indicate that Na$_2$RuO$_3$ is a moderately correlated electron metal. Our results thus stand in contrast to earlier reports that Na$_2$RuO$_3$ is an antiferromagnetic insulator at low temperatures.
Li2RuO3 undergoes a structural transition at a relatively high temperature of 550 K with a distinct dimerization of Ru-Ru bonds on the otherwise isotropic honeycomb lattice. It exhibits a unique herringbone dimerization pattern with a largest ever re
The honeycomb-lattice ruthenate Li$_2$RuO$_3$ is made heavily Li-deficient by chemical oxidation by iodine. The delithiation triggers a different phase Li$_{2-x}$RuO$_3$, the D-phase, with superlattice. For the first time we disclose the magnetic and
Co$^{2+}$ ions in an octahedral crystal field, stabilise a j$_{eff}$ = 1/2 ground state with an orbital degree of freedom and have been recently put forward for realising Kitaev interactions, a prediction we have tested by investigating spin dynamics
The interplay between multiple bands, sizable multi-band electronic correlations and strong spin-orbit coupling may conspire in selecting a rather unusual unconventional pairing symmetry in layered Sr$_{2}$RuO$_{4}$. This mandates a detailed revisit
Spin-1/2 chains with alternating antiferromagnetic (AF) and ferromagnetic (FM) couplings exhibit quantum entanglement like the integer-spin Haldane chains and might be similarly utilized for quantum computations. Such alternating AF-FM chains have be