ﻻ يوجد ملخص باللغة العربية
Co$^{2+}$ ions in an octahedral crystal field, stabilise a j$_{eff}$ = 1/2 ground state with an orbital degree of freedom and have been recently put forward for realising Kitaev interactions, a prediction we have tested by investigating spin dynamics in two cobalt honeycomb lattice compounds, Na$_2$Co$_2$TeO$_6$ and Na$_3$Co$_2$SbO$_6$, using inelastic neutron scattering. We used linear spin wave theory to show that the magnetic spectra can be reproduced with a spin Hamiltonian including a dominant Kitaev nearest-neighbour interaction, weaker Heisenberg interactions up to the third neighbour and bond-dependent off-diagonal exchange interactions. Beyond the Kitaev interaction that alone would induce a quantum spin liquid state, the presence of these additional couplings is responsible for the zigzag-type long-range magnetic ordering observed at low temperature in both compounds. These results provide evidence for the realization of Kitaev-type coupling in cobalt-based materials, despite hosting a weaker spin-orbit coupling than their 4d and 5d counterparts.
Finding new materials with antiferromagnetic (AFM) Kitaev interaction is an urgent issue to broaden and enrich the quantum magnetism research significantly. By carrying out inelastic neutron scattering experiments and subsequent analysis, we conclude
Na$_2$Co$_2$TeO$_6$ has recently been proposed to be a Kitaev-like honeycomb magnet. To assess how close it is to realizing Kitaev quantum spin liquids, we have measured magnetization and specific heat on high-quality single crystals in magnetic fiel
We studied the field dependent thermal conductivity ($kappa$) of Na$_2$Co$_2$TeO$_6$, a compound considered as the manifestation of the Kitaev model based on the high-spin $d^7$ Co$^{2+}$ ions. We found that in-plane magnetic fields beyond a critical
Spin-1/2 chains with alternating antiferromagnetic (AF) and ferromagnetic (FM) couplings exhibit quantum entanglement like the integer-spin Haldane chains and might be similarly utilized for quantum computations. Such alternating AF-FM chains have be
The nature of Na ion distribution, diffusion path, and the spin structure of $P2$-type Na$_2$Ni$_2$TeO$_6$ with a Ni honeycomb network has been explored. The nuclear density distribution of Na ions reveals a 2D chiral pattern within Na layers without