ﻻ يوجد ملخص باللغة العربية
We present simulations of cosmic reionization and reheating from $z=18$ to $z=5$, investigating the role of stars (emitting soft UV-photons), nuclear black holes (BHs, with power-law spectra), X-ray binaries (XRBs, with hard X-ray dominated spectra), and the supernova-associated thermal bremsstrahlung of the diffuse interstellar medium (ISM, with soft X-ray spectra). We post-process the hydrodynamical simulation Massive-Black II (MBII) with multifrequency ionizing radiative transfer. The source properties are directly derived from the physical environment of MBII, and our only real free parameter is the ionizing escape fraction $f_{rm esc}$. We find that, among the models explored here, the one with an escape fraction that decreases with decreasing redshift yields results most in line with observations, such as of the neutral hydrogen fraction and the Thomson scattering optical depth. Stars are the main driver of hydrogen reionization and consequently of the thermal history of the intergalactic medium (IGM). We obtain $langle x_{rm HII} rangle = 0.99998$ at $z=6$ for all source types, with volume averaged temperatures $langle T rangle sim 20,000~{rm K}$. BHs are rare and negligible to hydrogen reionization, but conversely they are the only sources which can fully ionize helium, increasing local temperatures by $sim 10^4~{rm K}$. The thermal and ionization state of the neutral and lowly ionized hydrogen differs significantly with different source combinations, with ISM and (to a lesser extent) XRBs, playing a significant role and, as a consequence, determining the transition from absorption to emission of the 21 cm signal from neutral hydrogen.
During reionization, the intergalactic medium is heated impulsively by supersonic ionization fronts (I-fronts). The peak gas temperatures behind the I-fronts, $T_mathrm{reion}$, are a key uncertainty in models of the thermal history after reionizatio
We present an efficient method to generate large simulations of the Epoch of Reionization (EoR) without the need for a full 3-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted
Observations of the 21 cm line from neutral hydrogen indicate that an Epoch of Heating (EoH) might have preceded the later Epoch of Reionization (EoR). Here we study the effects on the ionization state and the thermal history of the Intergalactic Med
Provided a random realization of the cosmological model, observations of our cosmic neighborhood now allow us to build simulations of the latter down to the non-linear threshold. The resulting local Universe models are thus accurate up to a given res
To exploit the power of next-generation large-scale structure surveys, ensembles of numerical simulations are necessary to give accurate theoretical predictions of the statistics of observables. High-fidelity simulations come at a towering computatio