ترغب بنشر مسار تعليمي؟ اضغط هنا

The Epoch of IGM heating by early sources of X-rays

56   0   0.0 ( 0 )
 نشر من قبل Marius Berge Eide
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of the 21 cm line from neutral hydrogen indicate that an Epoch of Heating (EoH) might have preceded the later Epoch of Reionization (EoR). Here we study the effects on the ionization state and the thermal history of the Intergalactic Medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high redshift Universe: (i) stars, (ii) X-ray binaries (XRBs), (iii) thermal bremsstrahlung of the hot Interstellar Medium (ISM), and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the ($100 h^{-1}$ cMpc)$^3$ hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of UV and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median $T=11$ K at $z=10$), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the CMB, opening the possibility to observing the 21 cm signal in emission.



قيم البحث

اقرأ أيضاً

The diffuse soft X-ray emissivity from galactic winds is computed during the Epoch of Reionization (EoR). We consider two analytic models, a pressure-driven wind and a superbubble model, and a 3D cosmological simulation including gas dynamics from th e First Billion Years (FiBY) project. The analytic models are normalized to match the diffuse X-ray emissivity of star-forming galaxies in the nearby Universe. The cosmological simulation uses physically motivated star formation and wind prescriptions, and includes radiative transfer corrections. The models and the simulation all are found to produce sufficient heating of the Intergalactic Medium to be detectable by current and planned radio facilities through 21 cm measurements during the EoR. While the analytic models predict a 21 cm emission signal relative to the Cosmic Microwave Background sets in by $z_{rm trans} simeq 8 - 10$, the predicted signal in the FiBY simulation remains in absorption until reionization completes. The 21 cm absorption differential brightness temperature reaches a minimum of $Delta T simeq -130$ to $-200$ mK, depending on model. Allowing for additional heat from high mass X-ray binaries pushes the transition to emission to $z_{rm trans} simeq 10 - 12$, with shallower absorption signatures having a minimum of $Delta T simeq -110$ to $-140$ mK. The 21 cm signal may be a means of distinguishing between the wind models, with the superbubble model favouring earlier reheating. While an early transition to emission may indicate X-ray binaries dominate the reheating, a transition to emission as early as $z_{rm trans} > 12$ would suggest the presence of additional heat sources.
Heating of neutral gas by energetic sources is crucial for the prediction of the 21 cm signal during the epoch of reionization (EoR). To investigate differences induced on statistics of the 21 cm signal by various source types, we use five radiative transfer simulations which have the same stellar UV emission model and varying combinations of more energetic sources, such as X-ray binaries (XRBs), accreting nuclear black holes (BHs) and hot interstellar medium emission (ISM). We find that the efficient heating from the ISM increases the average global 21~cm signal, while reducing its fluctuations and thus power spectrum. A clear impact is also observed in the bispectrum in terms of scale and timing of the transition between a positive and a negative value. The impact of XRBs is similar to that of the ISM, although it is delayed in time and reduced in intensity because of the less efficient heating. Due to the paucity of nuclear BHs, the behaviour of the 21~cm statistics in their presence is very similar to that of a case when only stars are considered, with the exception of the latest stages of reionization, when the effect of BHs is clearly visible. We find that differences between the source scenarios investigated here are larger than the instrumental noise of SKA1-low at $z gtrsim 7-8$, suggesting that in the future it might be possible to constrain the spectral energy distribution of the sources contributing to the reionization process.
117 - Benedetta Ciardi 2009
In this paper we examine the effect of X-ray and Lyalpha photons on the intergalactic medium temperature. We calculate the photon production from a population of stars and micro-quasars in a set of cosmological hydrodynamic simulations which self-con sistently follow the dark matter dynamics, radiative processes as well as star formation, black hole growth and associated feedback processes. We find that, (i) IGM heating is always dominated by X-rays unless the Lyalpha photon contribution from stars in objects with mass M<10^8 Msun becomes significantly enhanced with respect to the X-ray contribution from BHs in the same halo (which we do not directly model). (ii) Without overproducing the unresolved X-ray background, the gas temperature becomes larger than the CMB temperature, and thus an associated 21 cm signal should be expected in emission, at z<11.5. We discuss how in such a scenario the transition redshift between a 21 cm signal in absorption and in emission could be used to constraint BHs accretion and associated feedback processes.
We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observati ons were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of $10^4$ mK on comoving scales $klesssim 0.5 h$Mpc$^{-1}$. This represents the first upper limits on the $21$ cm power spectrum fluctuations at redshifts $12lesssim z lesssim 18$ but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.
The hot, X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales significantly shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM has remained open. Here we present a plausible solution to this question based on deep Chandra X-ray observatory data and a new data-analysis method that enables us to evaluate directly the ICM heating rate due to the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius - it might therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in atmospheres of X-ray gas-rich systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا