ﻻ يوجد ملخص باللغة العربية
In this paper, we present the design and test results of LOCx2-130, a low-power, low-latency, dual-channel transmitter ASIC for detector front-end readout. LOCx2-130 has two channels of encoders and serializers, and each channel operates at 4.8 Gbps. LOCx2-130 can interface with three types of ADCs, an ASIC ADC and two COTS ADCs. LOCx2-130 is fabricated in a commercial 130-nm CMOS technology and is packaged in a 100-pin QFN package. LOCx2-130 consumes 440 mW and achieves a latency of less than 40.7 ns.
In this paper, we present a dual-channel serializer ASIC, LOCx2, and its pin-compatible backup, LOCx2-130, for detector front-end readout. LOCx2 is fabricated in a 0.25-um Silicon-on-Sapphire CMOS process and each channel operates at 5.12 Gbps, while
In this paper, we present the design and test results of LOCx2, a transmitter ASIC for the ATLAS Liquid Argon Calorimeter trigger upgrade. LOCx2 consists of two channels and each channel encodes ADC data with an overhead of 14.3% and transmits serial
We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 um CMOS technology (X-Fab XH035), consists of 64 readout channels, and
Time and charge measurements over a large dynamic range from 1 Photo Electron (P.E.) to 4000 P.E. are required for the Water Cherenkov Detector Array (WCDA), which is one of the key components in the Large High Altitude Air Shower Observatory (LHAASO
We designed a versatile analog front-end chip, called LTARS, for TPC-applications, primarily targeted at dual-phase liquid Ar-TPCs for neutrino experiments and negative-ion $mu$-TPCs for directional dark matter searches. Low-noise performance and wid