ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting the internal nonlocality from the dilated Hermiticity

238   0   0.0 ( 0 )
 نشر من قبل Junde Wu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To effectively realize a $cal PT$-symmetric system, one can dilate a $cal PT$-symmetric Hamiltonian to some global Hermitian one and simulate its evolution in the dilated Hermitian system. However, with only a global Hermitian Hamiltonian, how do we know whether it is a dilation and is useful for simulation? To answer this question, we consider the problem of how to extract the internal nonlocality in the Hermitian dilation. We unveil that the internal nonlocality brings nontrivial correlations between the subsystems. By evaluating the correlations with local measurements in three different pictures, the resulting different expectations of the Bell operator reveal the distinction of the internal nonlocality. When the simulated $cal PT$-symmetric Hamiltonian approaches its exceptional point, such a distinction tends to be most significant. Our results clearly make a difference between the Hermitian dilation and other global Hamiltonians without internal nonlocality. They also provide the figure of merit to test the reliability of the simulation, as well as to verify a $cal PT$-symmetric (sub)system.

قيم البحث

اقرأ أيضاً

The quantum mechanical brachistochrone system with PT-symmetric Hamiltonian is Naimark dilated and reinterpreted as subsystem of a Hermitian system in a higher-dimensional Hilbert space. This opens a way to a direct experimental implementation of the recently hypothesized PT-symmetric ultra-fast brachistochrone regime of [C. M. Bender et al, Phys. Rev. Lett. {bf 98}, 040403 (2007)] in an entangled two-spin system.
Certain predictions of quantum theory are not compatible with the notion of local-realism. This was the content of Bells famous theorem of the year 1964. Bell proved this with the help of an inequality, famously known as Bells inequality. The alterna tive proofs of Bells theorem without using Bells inequality are known as `nonlocality without inequality (NLWI) proofs. We, review one such proof, namely the Hardys proof which due to its simplicity and generality has been considered the best version of Bells theorem.
32 - L. Solombrino 2002
We inquire into some properties of diagonalizable pseudo-Hermitian operators, showing that their definition can be relaxed and that the pseudo-Hermiticity property is strictly connected with the existence of an antilinear symmetry. This result is the n illustrated by considering the particular case of the complex Morse potential.
We investigate the complexity cost of demonstrating the key types of nonclassical correlations --- Bell inequality violation, EPR-steering, and entanglement --- with independent agents, theoretically and in a photonic experiment. We show that the com plexity cost exhibits a hierarchy among these three tasks, mirroring the recently-discovered hierarchy for how robust they are to noise. For Bell inequality violations, the simplest test is the well-known CHSH test, but for EPR-steering and entanglement the tests that involve the fewest number of detection patterns require non-projective measurements. The simplest EPR-steering requires a choice of projective measurement for one agent and a single non-projective measurement for the other, while the simplest entanglement test uses just a single non-projective measurement for each agent. In both of these cases, we derive our inequalities using the concept of circular 2-designs. This leads to the interesting feature that in our photonic demonstrations, the correlation of interest is independent of the angle between the linear polarizers used by the two parties, which thus require no alignment.
We report on some quantum properties of physical systems, namely, entanglement, nonlocality, $k$-copy nonlocality (superactivation of nonlocality), hidden nonlocality (activation of nonlocality through local filtering) and the activation of nonlocali ty through tensoring and local filtering. The aim of this work is two-fold. First, we provide a review of the numerical procedures that must be followed in order to calculate the aforementioned properties, in particular, for any two-qubit system, and reproduce the bounds for two-qudit Werner states. Second, we use such numerical tools to calculate new bounds of these properties for two-qudit Isotropic states and two-qubit Hirsch states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا