ﻻ يوجد ملخص باللغة العربية
We report on some quantum properties of physical systems, namely, entanglement, nonlocality, $k$-copy nonlocality (superactivation of nonlocality), hidden nonlocality (activation of nonlocality through local filtering) and the activation of nonlocality through tensoring and local filtering. The aim of this work is two-fold. First, we provide a review of the numerical procedures that must be followed in order to calculate the aforementioned properties, in particular, for any two-qubit system, and reproduce the bounds for two-qudit Werner states. Second, we use such numerical tools to calculate new bounds of these properties for two-qudit Isotropic states and two-qubit Hirsch states.
Activation of Bell nonlocality refers to the phenomenon that some entangled mixed states that admit a local hidden variable model in the standard Bell scenario nevertheless reveal their nonlocal nature in more exotic measurement scenarios. We present
What violations of Bell inequalities teach us is that the world is quantum mechanical, i.e., nonclassical. Assertions that they imply the world is nonlocal arise from ignoring differences between quantum and classical physics.
We investigate the complexity cost of demonstrating the key types of nonclassical correlations --- Bell inequality violation, EPR-steering, and entanglement --- with independent agents, theoretically and in a photonic experiment. We show that the com
We show that for all $nge3$, an example of an $n$-partite quantum correlation that is not genuinely multipartite nonlocal but rather exhibiting anonymous nonlocality, that is, nonlocal but biseparable with respect to all bipartitions, can be obtained
The multipartite correlations derived from local measurements on some composite quantum systems are inconsistent with those reproduced classically. This inconsistency is known as quantum nonlocality and shows a milestone in the foundations of quantum