ﻻ يوجد ملخص باللغة العربية
We propose a protocol for quantum adiabatic optimization, whereby an intermediary Hamiltonian that is diagonal in the computational basis is turned on and off during the interpolation. This `diagonal catalyst serves to bias the energy landscape towards a given spin configuration, and we show how this can remove the first-order phase transition present in the standard protocol for the ferromagnetic $p$-spin and the Weak-Strong Cluster problems. The success of the protocol also makes clear how it can fail: biasing the energy landscape towards a state only helps in finding the ground state if the Hamming distance from the ground state and the energy of the biased state are correlated. We present examples where biasing towards low energy states that are nonetheless very far in Hamming distance from the ground state can severely worsen the efficiency of the algorithm compared to the standard protocol. Our results for the diagonal catalyst protocol are analogous to results exhibited by adiabatic reverse annealing, so our conclusions should apply to that protocol as well.
It is believed that the presence of anticrossings with exponentially small gaps between the lowest two energy levels of the system Hamiltonian, can render adiabatic quantum optimization inefficient. Here, we present a simple adiabatic quantum algorit
It was recently shown that, for solving NP-complete problems, adiabatic paths always exist without finite-order perturbative crossings between local and global minima, which could lead to anticrossings with exponentially small energy gaps if present.
Quantum fluctuations driven by non-stoquastic Hamiltonians have been conjectured to be an important and perhaps essential missing ingredient for achieving a quantum advantage with adiabatic optimization. We introduce a transformation that maps every
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers $r(G,H
We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard