ﻻ يوجد ملخص باللغة العربية
It is believed that the presence of anticrossings with exponentially small gaps between the lowest two energy levels of the system Hamiltonian, can render adiabatic quantum optimization inefficient. Here, we present a simple adiabatic quantum algorithm designed to eliminate exponentially small gaps caused by anticrossings between eigenstates that correspond with the local and global minima of the problem Hamiltonian. In each iteration of the algorithm, information is gathered about the local minima that are reached after passing the anticrossing non-adiabatically. This information is then used to penalize pathways to the corresponding local minima, by adjusting the initial Hamiltonian. This is repeated for multiple clusters of local minima as needed. We generate 64-qubit random instances of the maximum independent set problem, skewed to be extremely hard, with between 10^5 and 10^6 highly-degenerate local minima. Using quantum Monte Carlo simulations, it is found that the algorithm can trivially solve all the instances in ~10 iterations.
We propose a protocol for quantum adiabatic optimization, whereby an intermediary Hamiltonian that is diagonal in the computational basis is turned on and off during the interpolation. This `diagonal catalyst serves to bias the energy landscape towar
Quantum fluctuations driven by non-stoquastic Hamiltonians have been conjectured to be an important and perhaps essential missing ingredient for achieving a quantum advantage with adiabatic optimization. We introduce a transformation that maps every
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers $r(G,H
It was recently shown that, for solving NP-complete problems, adiabatic paths always exist without finite-order perturbative crossings between local and global minima, which could lead to anticrossings with exponentially small energy gaps if present.
We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard