ﻻ يوجد ملخص باللغة العربية
The luminosity constraint is a very precise relationship linking the power released by the Sun as photons and the solar neutrino fluxes. Such a relation, which is a direct consequence of the physical processes controlling the production and the transport of energy in the solar interior, is of great importance for the studies of solar neutrinos and has a special role for the search of neutrinos from the CNO cycle, whose first detection with a 5$sigma$ significance has been recently announced by the Borexino collaboration. Here we revise the luminosity constraint, discussing and validating its underlying hypotheses, in the light of latest solar neutrino and luminosity measurements. We generalize the current formulation of the luminosity constraint relation so that it can be easily used in future analysis of solar neutrino data, and we provide a specific application showing the link between CNO and pp neutrino fluxes.
With the discovery of a modest size for the mixing angle $theta_{13} sim 9^circ$ by the Daya Bay collaboration at $>$5 sigma (cite{dayabay}) the science of neutrino oscillations has shifted to explicit demonstration of CP violation and precision dete
A comprehensive introduction to the theory of the solar neutrino problem is given that is aimed at instructors who are not experts in quantum field theory but would like to incorporate these ideas into instruction of advanced undergraduate or beginni
We outline the opportunities to study with high precision the interface between nuclear and particle physics, which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.
We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = -2.88) damped Lyman-alpha system at z_abs = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lym
We revise the theoretical initial mass-final luminosity relation for progenitors of type IIP and IIL supernovae. The effects of the major uncertainties, as those due to the treatment of convection, semiconvection, rotation, mass loss, nuclear reactio