ﻻ يوجد ملخص باللغة العربية
The accelerating gradients in conventional linear accelerators are currently limited to 100 MV per meter. Plasma-based accelerators have the ability to sustain accelerating gradients which are several orders of magnitude greater than that obtained in conventionalaccelerators. Due to the rapid development of laser technology the laser-plasma-based accelerators are of great interest now. Over the past decade, successful experiments on laser wakefield acceleration of electrons in the plasma have confirmed the relevance of this acceleration. Evidently, the large accelerating gradients in the laser plasma accelerators allow to reduce the size and to cut the cost of accelerators. Another important advantage of the laser-plasma accelerators is that they can produce short electron bunches with high energy.
At the laser acceleration of self-injected electron bunch by plasma wakefield it is important to form bunch with small energy spread and small size. It has been shown that laser-pulse shaping on radius, intensity and shape controls characteristics of
Dynamics of self-injected electron bunches has been numerically simulated in blowout regime at self-consistent change of electron bunch acceleration by plasma wakefield, excited by a laser pulse, to additional their acceleration by wakefield, excited
The AWAKE experiment relies on the self-modulation instability of a long proton bunch to effectively drive wakefields and accelerate an electron bunch to GeV-level energies. During the first experimental run (2016-2018) the instability was made phase
Since it is possible to form laser pulses with a frequency much larger than the frequency of visible light, Prof. T.Tajima proposed using such pulse to accelerate the particles at its injection into the crystal. Here, the wakefield excitation in the
Seeded self-modulation in a plasma can transform a long proton beam into a train of micro-bunches that can excite a strong wakefield over long distances, but this needs the plasma to have a certain density profile with a short-scale ramp up. For the