ترغب بنشر مسار تعليمي؟ اضغط هنا

Vision at A Glance: Interplay between Fine and Coarse Information Processing Pathways

72   0   0.0 ( 0 )
 نشر من قبل Zilong Ji
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object recognition is often viewed as a feedforward, bottom-up process in machine learning, but in real neural systems, object recognition is a complicated process which involves the interplay between two signal pathways. One is the parvocellular pathway (P-pathway), which is slow and extracts fine features of objects; the other is the magnocellular pathway (M-pathway), which is fast and extracts coarse features of objects. It has been suggested that the interplay between the two pathways endows the neural system with the capacity of processing visual information rapidly, adaptively, and robustly. However, the underlying computational mechanisms remain largely unknown. In this study, we build a computational model to elucidate the computational advantages associated with the interactions between two pathways. Our model consists of two convolution neural networks: one mimics the P-pathway, referred to as FineNet, which is deep, has small-size kernels, and receives detailed visual inputs; the other mimics the M-pathway, referred to as CoarseNet, which is shallow, has large-size kernels, and receives low-pass filtered or binarized visual inputs. The two pathways interact with each other via a Restricted Boltzmann Machine. We find that: 1) FineNet can teach CoarseNet through imitation and improve its performance considerably; 2) CoarseNet can improve the noise robustness of FineNet through association; 3) the output of CoarseNet can serve as a cognitive bias to improve the performance of FineNet. We hope that this study will provide insight into understanding visual information processing and inspire the development of new object recognition architectures.



قيم البحث

اقرأ أيضاً

Recently, there emerges a series of vision Transformers, which show superior performance with a more compact model size than conventional convolutional neural networks, thanks to the strong ability of Transformers to model long-range dependencies. Ho wever, the advantages of vision Transformers also come with a price: Self-attention, the core part of Transformer, has a quadratic complexity to the input sequence length. This leads to a dramatic increase of computation and memory cost with the increase of sequence length, thus introducing difficulties when applying Transformers to the vision tasks that require dense predictions based on high-resolution feature maps. In this paper, we propose a new vision Transformer, named Glance-and-Gaze Transformer (GG-Transformer), to address the aforementioned issues. It is motivated by the Glance and Gaze behavior of human beings when recognizing objects in natural scenes, with the ability to efficiently model both long-range dependencies and local context. In GG-Transformer, the Glance and Gaze behavior is realized by two parallel branches: The Glance branch is achieved by performing self-attention on the adaptively-dilated partitions of the input, which leads to a linear complexity while still enjoying a global receptive field; The Gaze branch is implemented by a simple depth-wise convolutional layer, which compensates local image context to the features obtained by the Glance mechanism. We empirically demonstrate our method achieves consistently superior performance over previous state-of-the-art Transformers on various vision tasks and benchmarks. The codes and models will be made available at https://github.com/yucornetto/GG-Transformer.
Cross-modality generation is an emerging topic that aims to synthesize data in one modality based on information in a different modality. In this paper, we consider a task of such: given an arbitrary audio speech and one lip image of arbitrary target identity, generate synthesized lip movements of the target identity saying the speech. To perform well in this task, it inevitably requires a model to not only consider the retention of target identity, photo-realistic of synthesized images, consistency and smoothness of lip images in a sequence, but more importantly, learn the correlations between audio speech and lip movements. To solve the collective problems, we explore the best modeling of the audio-visual correlations in building and training a lip-movement generator network. Specifically, we devise a method to fuse audio and image embeddings to generate multiple lip images at once and propose a novel correlation loss to synchronize lip changes and speech changes. Our final model utilizes a combination of four losses for a comprehensive consideration in generating lip movements; it is trained in an end-to-end fashion and is robust to lip shapes, view angles and different facial characteristics. Thoughtful experiments on three datasets ranging from lab-recorded to lips in-the-wild show that our model significantly outperforms other state-of-the-art methods extended to this task.
Robust and accurate visual localization is a fundamental capability for numerous applications, such as autonomous driving, mobile robotics, or augmented reality. It remains, however, a challenging task, particularly for large-scale environments and i n presence of significant appearance changes. State-of-the-art methods not only struggle with such scenarios, but are often too resource intensive for certain real-time applications. In this paper we propose HF-Net, a hierarchical localization approach based on a monolithic CNN that simultaneously predicts local features and global descriptors for accurate 6-DoF localization. We exploit the coarse-to-fine localization paradigm: we first perform a global retrieval to obtain location hypotheses and only later match local features within those candidate places. This hierarchical approach incurs significant runtime savings and makes our system suitable for real-time operation. By leveraging learned descriptors, our method achieves remarkable localization robustness across large variations of appearance and sets a new state-of-the-art on two challenging benchmarks for large-scale localization.
This paper presents a vision system and a depth processing algorithm for DRC-HUBO+, the winner of the DRC finals 2015. Our system is designed to reliably capture 3D information of a scene and objects robust to challenging environment conditions. We a lso propose a depth-map upsampling method that produces an outliers-free depth map by explicitly handling depth outliers. Our system is suitable for an interactive robot with real-world that requires accurate object detection and pose estimation. We evaluate our depth processing algorithm over state-of-the-art algorithms on several synthetic and real-world datasets.
High dynamic range (HDR) video reconstruction from sequences captured with alternating exposures is a very challenging problem. Existing methods often align low dynamic range (LDR) input sequence in the image space using optical flow, and then merge the aligned images to produce HDR output. However, accurate alignment and fusion in the image space are difficult due to the missing details in the over-exposed regions and noise in the under-exposed regions, resulting in unpleasing ghosting artifacts. To enable more accurate alignment and HDR fusion, we introduce a coarse-to-fine deep learning framework for HDR video reconstruction. Firstly, we perform coarse alignment and pixel blending in the image space to estimate the coarse HDR video. Secondly, we conduct more sophisticated alignment and temporal fusion in the feature space of the coarse HDR video to produce better reconstruction. Considering the fact that there is no publicly available dataset for quantitative and comprehensive evaluation of HDR video reconstruction methods, we collect such a benchmark dataset, which contains $97$ sequences of static scenes and 184 testing pairs of dynamic scenes. Extensive experiments show that our method outperforms previous state-of-the-art methods. Our dataset, code and model will be made publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا