ترغب بنشر مسار تعليمي؟ اضغط هنا

From Coarse to Fine: Robust Hierarchical Localization at Large Scale

119   0   0.0 ( 0 )
 نشر من قبل Paul-Edouard Sarlin
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Robust and accurate visual localization is a fundamental capability for numerous applications, such as autonomous driving, mobile robotics, or augmented reality. It remains, however, a challenging task, particularly for large-scale environments and in presence of significant appearance changes. State-of-the-art methods not only struggle with such scenarios, but are often too resource intensive for certain real-time applications. In this paper we propose HF-Net, a hierarchical localization approach based on a monolithic CNN that simultaneously predicts local features and global descriptors for accurate 6-DoF localization. We exploit the coarse-to-fine localization paradigm: we first perform a global retrieval to obtain location hypotheses and only later match local features within those candidate places. This hierarchical approach incurs significant runtime savings and makes our system suitable for real-time operation. By leveraging learned descriptors, our method achieves remarkable localization robustness across large variations of appearance and sets a new state-of-the-art on two challenging benchmarks for large-scale localization.



قيم البحث

اقرأ أيضاً

124 - Yuxi Li , Weiyao Lin , John See 2020
Most current pipelines for spatio-temporal action localization connect frame-wise or clip-wise detection results to generate action proposals, where only local information is exploited and the efficiency is hindered by dense per-frame localization. I n this paper, we propose Coarse-to-Fine Action Detector (CFAD),an original end-to-end trainable framework for efficient spatio-temporal action localization. The CFAD introduces a new paradigm that first estimates coarse spatio-temporal action tubes from video streams, and then refines the tubes location based on key timestamps. This concept is implemented by two key components, the Coarse and Refine Modules in our framework. The parameterized modeling of long temporal information in the Coarse Module helps obtain accurate initial tube estimation, while the Refine Module selectively adjusts the tube location under the guidance of key timestamps. Against other methods, theproposed CFAD achieves competitive results on action detection benchmarks of UCF101-24, UCFSports and JHMDB-21 with inference speed that is 3.3x faster than the nearest competitors.
Facial landmark localization plays an important role in face recognition and analysis applications. In this paper, we give a brief introduction to a coarse-to-fine pipeline with neural networks and sequential regression. First, a global convolutional network is applied to the holistic facial image to give an initial landmark prediction. A pyramid of multi-scale local image patches is then cropped to feed to a new network for each landmark to refine the prediction. As the refinement network outputs a more accurate position estimation than the input, such procedure could be repeated several times until the estimation converges. We evaluate our system on the 300-W dataset [11] and it outperforms the recent state-of-the-arts.
78 - Yixiao Ge , Haibo Wang , Feng Zhu 2020
The task of large-scale retrieval-based image localization is to estimate the geographical location of a query image by recognizing its nearest reference images from a city-scale dataset. However, the general public benchmarks only provide noisy GPS labels associated with the training images, which act as weak supervisions for learning image-to-image similarities. Such label noise prevents deep neural networks from learning discriminative features for accurate localization. To tackle this challenge, we propose to self-supervise image-to-region similarities in order to fully explore the potential of difficult positive images alongside their sub-regions. The estimated image-to-region similarities can serve as extra training supervision for improving the network in generations, which could in turn gradually refine the fine-grained similarities to achieve optimal performance. Our proposed self-enhanced image-to-region similarity labels effectively deal with the training bottleneck in the state-of-the-art pipelines without any additional parameters or manual annotations in both training and inference. Our method outperforms state-of-the-arts on the standard localization benchmarks by noticeable margins and shows excellent generalization capability on multiple image retrieval datasets.
Robust and accurate localization is an essential component for robotic navigation and autonomous driving. The use of cameras for localization with high definition map (HD Map) provides an affordable localization sensor set. Existing methods suffer fr om pose estimation failure due to error prone data association or initialization with accurate initial pose requirement. In this paper, we propose a cost-effective vehicle localization system with HD map for autonomous driving that uses cameras as primary sensors. To this end, we formulate vision-based localization as a data association problem that maps visual semantics to landmarks in HD map. Specifically, system initialization is finished in a coarse to fine manner by combining coarse GPS (Global Positioning System) measurement and fine pose searching. In tracking stage, vehicle pose is refined by implicitly aligning the semantic segmentation result between image and landmarks in HD maps with photometric consistency. Finally, vehicle pose is computed by pose graph optimization in a sliding window fashion. We evaluate our method on two datasets and demonstrate that the proposed approach yields promising localization results in different driving scenarios. Additionally, our approach is suitable for both monocular camera and multi-cameras that provides flexibility and improves robustness for the localization system.
For relocalization in large-scale point clouds, we propose the first approach that unifies global place recognition and local 6DoF pose refinement. To this end, we design a Siamese network that jointly learns 3D local feature detection and descriptio n directly from raw 3D points. It integrates FlexConv and Squeeze-and-Excitation (SE) to assure that the learned local descriptor captures multi-level geometric information and channel-wise relations. For detecting 3D keypoints we predict the discriminativeness of the local descriptors in an unsupervised manner. We generate the global descriptor by directly aggregating the learned local descriptors with an effective attention mechanism. In this way, local and global 3D descriptors are inferred in one single forward pass. Experiments on various benchmarks demonstrate that our method achieves competitive results for both global point cloud retrieval and local point cloud registration in comparison to state-of-the-art approaches. To validate the generalizability and robustness of our 3D keypoints, we demonstrate that our method also performs favorably without fine-tuning on the registration of point clouds that were generated by a visual SLAM system. Code and related materials are available at https://vision.in.tum.de/research/vslam/dh3d.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا