ﻻ يوجد ملخص باللغة العربية
We report the implementation and performance of a double servo-loop for intensity and phase-difference active stabilization of a dual-frequency vertical external--cavity surface-emitting laser (DF-VECSEL) for coherent population trapping (CPT) of cesium atoms in the framework of compact atomic clocks. In--phase fully correlated pumping of the two laser modes is identified as the best scheme for intensity noise reduction, and an analytical model allows the optimization of the active stabilization strategy. Optical phase-locking the beat-note to a local oscillator leads to a phase noise level below -103~dBc/Hz at 100~Hz from the carrier. The laser contribution to the short-term frequency stability of the clock is predicted to be compatible with a targeted Allan deviation below $sigma_y = 5,times 10^{-13}$ over one second.
We report a fully-correlated multi-mode pumping architecture optimized for dramatic noise reduction of a class-A dual-frequency Vertical External Cavity Surface Emitting Laser (VECSEL). Thanks to amplitude division of a laser diode, the two orthogona
We theoretically and experimentally study the noise of a class-A dual-frequency vertical external cavity surface emitting laser operating at Cesium clock wavelength. The intensity noises of the two orthogonally polarized modes and the phase noise of
A global network of optical atomic clocks will enable unprecedented measurement precision in fields including tests of fundamental physics, dark matter searches, geodesy, and navigation. Free-space laser links through the turbulent atmosphere are nee
We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize
The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers.