ترغب بنشر مسار تعليمي؟ اضغط هنا

LUCI onboard Lagrange, the Next Generation of EUV Space Weather Monitoring

156   0   0.0 ( 0 )
 نشر من قبل Matthew West
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

LUCI (Lagrange eUv Coronal Imager) is a solar imager in the Extreme UltraViolet (EUV) that is being developed as part of the Lagrange mission, a mission designed to be positioned at the L5 Lagrangian point to monitor space weather from its source on the Sun, through the heliosphere, to the Earth. LUCI will use an off-axis two mirror design equipped with an EUV enhanced active pixel sensor. This type of detector has advantages that promise to be very beneficial for monitoring the source of space weather in the EUV. LUCI will also have a novel off-axis wide field-of-view, designed to observe the solar disk, the lower corona, and the extended solar atmosphere close to the Sun-Earth line. LUCI will provide solar coronal images at a 2-3 minute cadence in a pass-band centred on 19.5 nm. Observations made through this pass-band allow for the detection and monitoring of semi-static coronal structures such as coronal holes, prominences, and active regions; as well as transient phenomena such as solar flares, limb Coronal Mass Ejections (CMEs), EUV waves, and coronal dimmings. The LUCI data will complement EUV solar observations provided by instruments located along the Sun-Earth line such as PROBA2-SWAP, SUVI-GOES and SDO-AIA, as well as provide unique observations to improve space weather forecasts. Together with a suite of other remote-sensing and in-situ instruments onboard Lagrange, LUCI will provide science quality operational observations for space weather monitoring.



قيم البحث

اقرأ أيضاً

SWELTO -- Space WEather Laboratory in Turin Observatory is a conceptual framework where new ideas for the analysis of space-based and ground-based data are developed and tested. The input data are (but not limited to) remote sensing observations (EUV images of the solar disk, Visible Light coronagraphic images, radio dynamic spectra, etc...), in situ plasma measurements (interplanetary plasma density, velocity, magnetic field, etc...), as well as measurements acquired by local sensors and detectors (radio antenna, fluxgate magnetometer, full-sky cameras, located in OATo). The output products are automatic identification, tracking, and monitoring of solar stationary and dynamic features near the Sun (coronal holes, active regions, coronal mass ejections, etc...), and in the interplanetary medium (shocks, plasmoids, corotating interaction regions, etc...), as well as reconstructions of the interplanetary medium where solar disturbances may propagate from the Sun to the Earth and beyond. These are based both on empirical models and numerical MHD simulations. The aim of SWELTO is not only to test new data analysis methods for future application for Space Weather monitoring and prediction purposes, but also to procure, test and deploy new ground-based instrumentation to monitor the ionospheric and geomagnetic responses to solar activity. Moreover, people involved in SWELTO are active in outreach to disseminate the topics related with Space Weather to students and the general public.
166 - K.-S. Cho , H. Yang , J.-O. Lee 2020
Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously using four different filters around 400 nm. KASI organized an expedition team to demonstrate the coronagraph measurement scheme and the instrumental technology through the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, so-called Diagnostic Coronal Experiment (DICE), which is composed of two identical telescopes to improve a signal to noise ratio. The observation was conducted with 4 wavelengths and 3 linear polarization directions according to the planned schedule in a limited total eclipse time of about 140 seconds. Polarization information of corona from the data was successfully obtained but we were not able to obtain global information of coronal electron temperature and speed in the corona due to a low signal-to-noise ratio of the optical system and a strong emission from the prominence located in the western limb. In this study, we report the development of DICE and observation results from the eclipse expedition. TSE observation and analysis by using our own developed instrument gave an important lesson that a coronagraph should be carefully designed to achieve the scientific purpose of this study. And it was a very useful experience in the way for the success of follow-up NASA-KASI joint missions called the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and COronal Diagnostic EXperiment (CODEX).
147 - A. A. Vidotto 2014
Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be v ery different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session Cool stars and Space Weather, that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.
We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher phot ometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light, maximising sensitivity to late K and early M dwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100 square degrees, enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras are used to survey fields intensively at intermediate Galactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 hour for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full survey operations in 2016. NGTS data will be made publicly available through the ESO archive.
87 - S. Imada , T. Shimizu , T. Kawate 2017
The origin of the activity in the solar corona is a long-standing problem in solar physics. Recent satellite observations, such as Hinode, Solar Dynamics Observatory (SDO), Interface Region Imaging Spectrograph (IRIS), show the detail characteristics of the solar atmosphere and try to reveal the energy transfer from the photosphere to the corona through the magnetic fields and its energy conversion by various processes. However, quantitative estimation of energy transfer along the magnetic field is not enough. There are mainly two reason why it is difficult to observe the energy transfer from photosphere to corona; 1) spatial resolution gap between photosphere (a few 0.1 arcsec) and corona (a few arcsec), 2) lack in temperature coverage. Furthermore, there is not enough observational knowledge of the physical parameters in the energy dissipation region. There are mainly three reason why it is difficult to observe in the vicinity of the energy dissipation region; 1) small spatial scale, 2) short time scale, 3) low emission. It is generally believed that the energy dissipation occurs in the very small scale and its duration is very short (10 second). Further, the density in the dissipation region might be very low. Therefore, the high spatial and temporal resolution UV/EUV spectroscopic observation with wide temperature coverage is crucial to estimate the energy transport from photosphere to corona quantitatively and diagnose the plasma dynamics in the vicinity of the energy dissipation region. Main Science Target for the telescope is quantitative estimation for the energy transfer from the photosphere to the corona, and clarification of the plasma dynamics in the vicinity of the energy dissipation region, where is the key region for coronal heating, solar wind acceleration, and/or solar flare, by the high spatial and temporal resolution UV/EUV spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا