ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward Next Generation Solar Coronagraph: Diagnostic Coronagraph Experiment

167   0   0.0 ( 0 )
 نشر من قبل KyungSuk Cho PhD
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously using four different filters around 400 nm. KASI organized an expedition team to demonstrate the coronagraph measurement scheme and the instrumental technology through the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, so-called Diagnostic Coronal Experiment (DICE), which is composed of two identical telescopes to improve a signal to noise ratio. The observation was conducted with 4 wavelengths and 3 linear polarization directions according to the planned schedule in a limited total eclipse time of about 140 seconds. Polarization information of corona from the data was successfully obtained but we were not able to obtain global information of coronal electron temperature and speed in the corona due to a low signal-to-noise ratio of the optical system and a strong emission from the prominence located in the western limb. In this study, we report the development of DICE and observation results from the eclipse expedition. TSE observation and analysis by using our own developed instrument gave an important lesson that a coronagraph should be carefully designed to achieve the scientific purpose of this study. And it was a very useful experience in the way for the success of follow-up NASA-KASI joint missions called the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and COronal Diagnostic EXperiment (CODEX).

قيم البحث

اقرأ أيضاً

With the recent commissioning of ground instruments such as SPHERE or GPI and future space observatories like WFIRST-AFTA, coronagraphy should probably become the most efficient tool for identifying and characterizing extra-solar planets in the forth coming years. Coronagraphic instruments such as Phase mask coronagraphs (PMC) are usually based on a phase mask or plate located at the telescope focal plane, spreading the starlight outside the diameter of a Lyot stop that blocks it. In this communication is investigated the capability of a PMC to act as a phase-shifting wavefront sensor for better control of the achieved star extinction ratio in presence of the coronagraphic mask. We discuss the two main implementations of the phase-shifting process, either introducing phase-shifts in a pupil plane and sensing intensity variations in an image plane, or reciprocally. Conceptual optical designs are described in both cases. Numerical simulations allow for better understanding of the performance and limitations of both options, and optimizing their fundamental parameters. In particular, they demonstrate that the phase-shifting process is a bit more efficient when implemented into an image plane, and is compatible with the most popular phase masks currently employed, i.e. four-quadrants and vortex phase masks.
An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP79124, which had previously been detected by means of interferometry. With HIP79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Due to higher Strehl ratios and more relaxed contrasts in L band versus H band, this new coronagraphic capability will enable high-contrast small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs.
Understanding the physical processes responsible for accelerating the solar wind requires detailed measurements of the collisionless plasma in the extended solar corona. Some key clues about these processes have come from instruments that combine the power of an ultraviolet (UV) spectrometer with an occulted telescope. This combination enables measurements of ion emission lines far from the bright solar disk, where most of the solar wind acceleration occurs. Although the UVCS instrument on SOHO made several key discoveries, many questions remain unanswered because its capabilities were limited. This white paper summarizes these past achievements and also describes what can be accomplished with next-generation instrumentation of this kind.
The Nancy Grace Roman Space Telescope Coronagraph Instrument (CGI) will be capable of characterizing exoplanets in reflected light and will demonstrate space technologies essential for future missions to take spectra of Earthlike exoplanets. As the m ission and instrument move into the final stages of design, simulation tools spanning from depth of search calculators to detailed diffraction models have been created by a variety of teams. We summarize these efforts, with a particular focus on publicly available datasets and software tools. These include speckle and point-spread-function models, signal-to-noise calculators, and science product simulations (e.g. predicted observations of debris disks and exoplanet spectra). This review is intended to serve as a reference to facilitate engagement with the technical and science capabilities of the CGI instrument.
198 - M. Romoli 2021
The investigation of the wind in the solar corona initiated with the observations of the resonantly scattered UV emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying the Doppler dimming diagno stics. Metis on Solar Orbiter complements the UVCS spectroscopic observations, performed during solar activity cycle 23, by simultaneously imaging the polarized visible light and the HI Ly-alpha corona in order to obtain high-spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, on May 15, 2020, provide the first HI Ly-alpha images of the extended corona and the first instantaneous map of the speed of the coronal plasma outflows during the minimum of solar activity and allow us to identify the layer where the slow wind flow is observed. The polarized visible light (580-640 nm), and the UV HI Ly-alpha (121.6 nm) coronal emissions, obtained with the two Metis channels, are combined in order to measure the dimming of the UV emission relative to a static corona. This effect is caused by the outward motion of the coronal plasma along the direction of incidence of the chromospheric photons on the coronal neutral hydrogen. The plasma outflow velocity is then derived as a function of the measured Doppler dimming. The static corona UV emission is simulated on the basis of the plasma electron density inferred from the polarized visible light. This study leads to the identification, in the velocity maps of the solar corona, of the high-density layer about +/-10 deg wide, centered on the extension of a quiet equatorial streamer present at the East limb where the slowest wind flows at about (160 +/- 18) km/s from 4 Rs to 6 Rs. Beyond the boundaries of the high-density layer, the wind velocity rapidly increases, marking the transition between slow and fast wind in the corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا