ﻻ يوجد ملخص باللغة العربية
The current race in quantum communication -- endeavouring to establish a global quantum network -- must account for special and general relativistic effects. The well-studied general relativistic effects include Shapiro time-delay, gravitational lensing, and frame dragging which all are due to how a mass distribution alters geodesics. Here, we report how the curvature of spacetime geometry affects the propagation of information carriers along an arbitrary geodesic. An explicit expression for the distortion onto the carrier wavefunction in terms of the Riemann curvature is obtained. Furthermore, we investigate this distortion for anti-de Sitter and Schwarzschild geometries. For instance, the spacetime curvature causes a 0.10~radian phase-shift for communication between Earth and the International Space Station on a monochromatic laser beam and quadrupole astigmatism can cause a 12.2 % cross-talk between structured modes traversing through the solar system. Our finding shows that this gravitational distortion is significant, and it needs to be either pre- or post-corrected at the sender or receiver to retrieve the information.
We extend Derricks theorem to the case of a generic irrotational curved spacetime adopting a strategy similar to the original proof. We show that a static relativistic star made of real scalar fields is never possible regardless of the geometrical pr
We present a proof that quantum Yang-Mills theory can be consistently defined as a renormalized, perturbative quantum field theory on an arbitrary globally hyperbolic curved, Lorentzian spacetime. To this end, we construct the non-commutative algebra
Relativistic quantum field theory in the presence of an external electric potential in a general curved space-time geometry is considered. The Fermi coordinates adapted to the time-like geodesic are utilized to describe the low-energy physics in the
We present a new approach to the problem of the thermodynamical equilibrium of a quantum relativistic fluid in a curved spacetime in the limit of small curvature. We calculate the mean value of local operators by expanding the four-temperature Killin
Hydrodynamics of the non-relativistic compressible fluid in the curved spacetime is derived using the generalized framework of the stochastic variational method (SVM) for continuum medium. The fluid-stress tensor of the resultant equation becomes asy