ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of a tiny flux rope in the center of an active region driven by magnetic flux emergence, convergence, and cancellation

78   0   0.0 ( 0 )
 نشر من قبل Ruisheng Zheng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Flux ropes are generally believed to be core structures of solar eruptions that are significant for the space weather, but their formation mechanism remains intensely debated. We report on the formation of a tiny flux rope beneath clusters of active region loops on 2018 August 24. Combining the high-quality multiwavelength observations from multiple instruments, we studied the event in detail in the photosphere, chromosphere, and corona. In the source region, the continual emergence of two positive polarities (P1 and P2) that appeared as two pores (A and B)is unambiguous. Interestingly, P2 and Pore B slowly approached P1 and Pore A, implying a magnetic flux convergence. During the emergence and convergence, P1 and P2 successively interacted with a minor negative polarity (N3) that emerged, which led to a continuous magnetic flux cancellation. As a result, the overlying loops became much sheared and finally evolved into a tiny twisted flux rope that was evidenced by a transient inverse S-shaped sigmoid, the twisted filament threads with blueshift and redshift signatures, and a hot channel. All the results show that the formation of the tiny flux rope in the center of the active region was closely associated with the continuous magnetic flux emergence, convergence, and cancellation in the photosphere. Hence, we suggest that the magnetic flux emergence, convergence, and cancellation are crucial for the formation of the tiny flux rope.



قيم البحث

اقرأ أيضاً

In this work, we investigate the formation of a magnetic flux rope (MFR) above the central polarity inversion line (PIL) of NOAA Active Region 12673 during its early emergence phase. Through analyzing the photospheric vector magnetic field, extreme u ltraviolet (EUV) and ultraviolet (UV) images, extrapolated three-dimensional (3D) non-linear force-free fields (NLFFFs), as well as the photospheric motions, we find that with the successive emergence of different bipoles in the central region, the conjugate polarities separate, resulting in collision between the non-conjugated opposite polarities. Nearly-potential loops appear above the PIL at first, then get sheared and merge at the collision locations as evidenced by the appearance of a continuous EUV sigmoid on 2017 September 4, which also indicates the formation of an MFR. The 3D NLFFFs further reveal the gradual buildup of the MFR, accompanied by the appearance of two elongated bald patches (BPs) at the collision locations and a very low-lying hyperbolic flux tube configuration between the BPs. The final MFR has relatively steady axial flux and average twist number of around $2.1times 10^{20}$~Mx and -1.5, respective. Shearing motions are found developing near the BPs when the collision occurs, with flux cancellation and UV brightenings being observed simultaneously, indicating the development of a process named as collisional shearing (firstly identified by Chintzoglou et al. 2019). The results clearly show that the MFR is formed by collisional shearing, i.e., through shearing and flux cancellation driven by the collision between non-conjugated opposite polarities during their emergence.
We study an evolving bipolar active region that exhibits flux cancellation at the internal polarity inversion line, the formation of a soft X-ray sigmoid along the inversion line and a coronal mass ejection. The evolution of the photospheric magnetic field is described and used to estimate how much flux is reconnected into the flux rope. About one third of the active region flux cancels at the internal polarity inversion line in the 2.5~days leading up to the eruption. In this period, the coronal structure evolves from a weakly to a highly sheared arcade and then to a sigmoid that crosses the inversion line in the inverse direction. These properties suggest that a flux rope has formed prior to the eruption. The amount of cancellation implies that up to 60% of the active region flux could be in the body of the flux rope. We point out that only part of the cancellation contributes to the flux in the rope if the arcade is only weakly sheared, as in the first part of the evolution. This reduces the estimated flux in the rope to $sim!30%$ or less of the active region flux. We suggest that the remaining discrepancy between our estimate and the limiting value of $sim!10%$ of the active region flux, obtained previously by the flux rope insertion method, results from the incomplete coherence of the flux rope, due to nonuniform cancellation along the polarity inversion line. A hot linear feature is observed in the active region which rises as part of the eruption and then likely traces out field lines close to the axis of the flux rope. The flux cancellation and changing magnetic connections at one end of this feature suggest that the flux rope reaches coherence by reconnection shortly before and early in the impulsive phase of the associated flare. The sigmoid is destroyed in the eruption but reforms within a few hours after a moderate amount of further cancellation has occurred.
Continuous observations were obtained of active region 10953 with the Solar Optical Telescope (SOT) on board the emph{Hinode} satellite during 2007 April 28 to May 9. A prominence was located over the polarity inversion line (PIL) in the south-east o f the main sunspot. These observations provided us with a time series of vector magnetic fields on the photosphere under the prominence. We found four features: (1) The abutting opposite-polarity regions on the two sides along the PIL first grew laterally in size and then narrowed. (2) These abutting regions contained vertically-weak, but horizontally-strong magnetic fields. (3) The orientations of the horizontal magnetic fields along the PIL on the photosphere gradually changed with time from a normal-polarity configuration to a inverse-polarity one. (4) The horizontal-magnetic field region was blueshifted. These indicate that helical flux rope was emerging from below the photosphere into the corona along the PIL under the pre-existing prominence. We suggest that this supply of a helical magnetic flux into the corona is associated with evolution and maintenance of active-region prominences.
209 - X. Cheng , M. D. Ding , J. Zhang 2014
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmos pheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About two hours before the eruption, indications for a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.
159 - Fang Fang , Yuhong Fan 2015
$delta$-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. (2014). Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact $delta$-sunspot with a sharp polarity inversion line. The formation of the $delta$-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hales law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the Delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا