ترغب بنشر مسار تعليمي؟ اضغط هنا

A near-infrared study of the obscured 3C129 galaxy cluster

132   0   0.0 ( 0 )
 نشر من قبل Mpati Ramatsoku
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a catalogue of 261 new infrared selected members of the 3C129 galaxy cluster. The cluster, located at $z approx$ 0.02, forms part of the Perseus-Pisces filament and is obscured at optical wavelengths due to its location in the zone of avoidance. We identified these galaxies using the $J-$ and $K-$band imaging data provided by the UKIDSS Galactic Plane Survey within an area with a radius of $1.1^{circ}$ centred on the X-ray emission of the cluster at $ell, b approx 160.52^{circ}, 0.27^{circ}$. A total of 26 of the identified galaxy members have known redshifts 24 of which are from our 2016 Westerbork HI survey and two are from optical spectroscopy. An analysis of the galaxy density at the core of the 3C129 cluster shows it to be less dense than the Coma and Norma clusters, but comparable to the galaxy density in the core of the Perseus cluster. From an assessment of the spatial and velocity distributions of the 3C129 cluster galaxies that have redshifts, we derived a velocity of $cz = 5227 pm 171$ km/s and $sigma = 1097 pm 252$ km/s for the main cluster, with a substructure in the cluster outskirts at $cz = 6923 pm 71$ km/s with $sigma = 422 pm 100$ km/s. The presence of this substructure is consistent with previous claims based on the X-ray analysis that the cluster is not yet virialised and may have undergone a recent merger.



قيم البحث

اقرأ أيضاً

We present wide-field JHKs-band photometric observations of the three compact HII regions G48.9-0.3, G49.0-0.3, and G49.2-0.3 in the active star-forming region W51B. The star clusters inside the three compact HII regions show the excess number of sta rs in the J-Ks histograms compared with reference fields. While the mean color excess ratio E(J-H)/E(H-Ks) of the three compact HII regions are similar to ~ 2.07, the visual extinctions toward them are somewhat different: ~ 17 mag for G48.9-0.3 and G49.0-0.3; ~ 23 mag for G49.2-0.3. Based on their sizes and brightnesses, we suggest that the age of each compact HII region is =< 2 Myr. The inferred total stellar mass, ~ 1.4 x 10^4 M_sun, of W51B makes it one of the most active star forming regions in the Galaxy with the star formation efficiency of ~ 10 %.
We report the results of a near-infrared imaging study of a $7.8 times 7.8$ arcmin$^2$ region centered on the 6.7 GHz methanol maser associated with the RCW 34 star forming region using the 1.4m IRSF telescope at Sutherland. A total of 1283 objects w ere detected simultaneously in J, H, and K for an exposure time of 10800 seconds. The J-H, H-K two-colour diagram revealed a strong concentration of more than 700 objects with colours similar to what is expected of reddened classical T Tauri stars. The distribution of the objects on the K {it vs} J-K colour-magnitude diagram is also suggestive that a significant fraction of the 1283 objects is lower mass pre-main sequence stars. We also present the luminosity function for the subset of about 700 pre-main sequence stars and show that it suggests ongoing star formation activity for about $10^7$ years. An examination of the spatial distribution of the pre-main sequence stars shows that the fainter (older) part of the population is more dispersed over the observed region and the brighter (younger) subset is more concentrated around the position of the O8.5V star. This suggests that the physical effects of the O8.5V star and the two early B-type stars on the remainder of the cloud out of which they formed, could have played a role in the onset of the more recent episode of star formation in RCW 34.
155 - Sang Chul Kim , 2009
We present JHK near-infrared photometric study for the old open cluster (OC) Trumpler 5 (Tr 5), based on the 2MASS data. From the color-magnitude diagrams of Tr 5, we have located the position of the red giant clump (RGC) stars, and used the mean mag nitude of the RGC stars in K-band to estimate the distance to Tr 5, d = 3.1 +/- 0.1 kpc ((m-M)_0 = 12.46 +/- 0.04). From fitting the theoretical isochrones of Padova group, we have estimated the reddening, metallicity, and age : E(B-V) = 0.64 +/- 0.05, [Fe/H] = -0.4 +/- 0.1 dex, and t =2.8 +/- 0.2 Gyr (log t=9.45 +/- 0.04), respectively. These parameters generally agree well with those obtained from the previous studies on Tr 5 and confirms that this cluster is an old OC with metallicity being metal-poorer than solar abundance, located in the anti-Galactic center region.
The edge-on galaxy NGC 891 was probed using near-infrared (NIR) imaging polarimetry in the H-band (1.6 um) with the Mimir instrument on the 1.8 m Perkins Telescope. Polarization was detected with signal-to-noise ratio greater than three out to a surf ace brightness of 18.8 mag arcsec^-2. The unweighted average and dispersion in polarization percentage (P) across the full disk were 0.7% and 0.3%, respectively, and the same quantities for polarization position angle (P.A.) were 12 deg and 19 deg, respectively. At least one polarization null point, where P falls nearly to zero, was detected in the NE disk but not the SW disk. Several other asymmetries in P between the northern and southern disk were found and may be related to spiral structure. Profiles of P and P.A. along the minor axis of NGC 891 suggest a transition from magnetic (B) field tracing dichroic polarization near the disk mid-plane to scattering dominated polarization off the disk mid-plane. A comparison between NIR P.A. and radio (3.6 cm) synchrotron polarization P.A. values revealed similar B-field orientations in the central-northeast region, which suggests that the hot plasma and cold, star-forming interstellar medium may share a common B-field. Disk-perpendicular polarizations previously seen at optical wavelengths are likely caused by scattered light from the bright galaxy center and are unlikely to be tracing poloidal B-fields in the outer disk.
152 - F. Martins 2012
We study the near-infrared properties of the super star cluster NGC1750-1 in order to constrain its spatial extent, its stellar population and its age. We use adaptive optics assisted integral field spectroscopy with SINFONI on the VLT. We estimate t he spatial extent of the cluster and extract its K-band spectrum from which we constrain the age of the dominant stellar population. Our observations have an angular resolution of about 0.11, providing an upper limit on the cluster radius of 2.85+/-0.50 pc depending on the assumed distance. The K-band spectrum is dominated by strong CO absorption bandheads typical of red supergiants. Its spectral type is equivalent to a K4-5I star. Using evolutionary tracks from the Geneva and Utrecht groups, we determine an age of 12+/-6 Myr. The large uncertainty is rooted in the large difference between the Geneva and Utrecht tracks in the red supergiants regime. The absence of ionized gas lines in the K-band spectrum is consistent with the absence of O and/or Wolf-Rayet stars in the cluster, as expected for the estimated age.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا