ﻻ يوجد ملخص باللغة العربية
It has long been thought that strongly correlated systems are adiabatically connected to their noninteracting counterpart. Recent developments have highlighted the fallacy of this traditional notion in a variety of settings. Here we use a class of strongly correlated electron systems as a platform to illustrate the kind of quantum phases and fluctuations that are created by strong correlations. Examples are quantum critical states that violate the Fermi liquid paradigm, unconventional superconductivity that goes beyond the BCS framework, and topological semimetals induced by the Kondo interaction. We assess the prospect of designing other exotic phases of matter, by utilizing alternative degrees of freedom or alternative interactions, and point to the potential of these correlated states for quantum technology.
We present angle-resolved photoemission experiments on 1T-TiSe2 at temperatures ranging from 13K to 288K. The data evidence a dramatic renormalization of the conduction band below 100K, whose origin can be explained with the exciton condensate phase
Electron correlations amplify quantum fluctuations and, as such, they have been recognized as the origin of a rich landscape of quantum phases. Whether and how they lead to gapless topological states is an outstanding question, and a framework that a
We analyze the transformation from insulator to metal induced by thermal fluctuations within the Falicov-Kimball model. Using the Dynamic Mean Field Theory (DMFT) formalism on the Bethe lattice we find rigorously the temperature dependent Density of
Metal-insulator transitions involve a mix of charge, spin, and structural degrees of freedom, and when strongly-correlated, can underlay the emergence of exotic quantum states. Mott insulators induced by the opening of a Coulomb gap are an important
We present an explanation for the puzzling spectral and transport properties of layered cobaltates close to the band-insulator limit, which relies on the key effect of charge ordering. Blocking a significant fraction of the lattice sites deeply modif