ﻻ يوجد ملخص باللغة العربية
In this paper, we compute all possible differential structures of a $3$-dimensional DG Sklyanin algebra $mathcal{A}$, which is a connected cochain DG algebra whose underlying graded algebra $mathcal{A}^{#}$ is a $3$-dimensional Sklyanin algebra $S_{a,b,c}$. We show that there are three major cases depending on the parameters $a,b,c$ of the underlying Sklyanin algebra $S_{a,b,c}$: (1) either $a^2 eq b^2$ or $c eq 0$, then $partial_{mathcal{A}}=0$; (2) $a=-b$ and $c=0$, then the $3$-dimensional DG Sklyanin algebra is actually a DG polynomial algebra; and (3) $a=b$ and $c=0$, then the DG Sklyanin algebra is uniquely determined by a $3times 3$ matrix $M$. It is worthy to point out that case (2) has been systematically studied in cite{MGYC} and case (3) is just the DG algebra $mathcal{A}_{mathcal{O}_{-1}(k^3)}(M)$ in cite{MWZ}. We solve the problem on how to judge whether a given $3$-dimensional DG Sklyanin algebra is Calabi-Yau.
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal en
We prove that multiplicative preprojective algebras, defined by Crawley-Boevey and Shaw, are 2-Calabi-Yau algebras, in the case of quivers containing unoriented cycles. If the quiver is not itself a cycle, we show that the center is trivial, and henc
We give an explicit formula showing how the double Poisson algebra introduced in cite{VdB} appears as a particular part of a pre-Calabi-Yau structure, i.e. cyclically invariant, with respect to the natural inner form, solution of the Maurer-Cartan eq
We provide a construction of minimal injective resolutions of simple comodules of path coalgebras of quivers with relations. Dual to Calabi-Yau condition of algebras, we introduce the Calabi-Yau condition to coalgebras. Then we give some descriptions
In this paper, we introduce and study differential graded (DG for short) polynomial algebras. In brief, a DG polynomial algebra $mathcal{A}$ is a connected cochain DG algebra such that its underlying graded algebra $mathcal{A}^{#}$ is a polynomial al