ﻻ يوجد ملخص باللغة العربية
We provide a construction of minimal injective resolutions of simple comodules of path coalgebras of quivers with relations. Dual to Calabi-Yau condition of algebras, we introduce the Calabi-Yau condition to coalgebras. Then we give some descriptions of Calabi-Yau coalgebras with lower global dimensions. An appendix is included for listing some properties of cohom functors.
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal en
We prove that multiplicative preprojective algebras, defined by Crawley-Boevey and Shaw, are 2-Calabi-Yau algebras, in the case of quivers containing unoriented cycles. If the quiver is not itself a cycle, we show that the center is trivial, and henc
We give an explicit formula showing how the double Poisson algebra introduced in cite{VdB} appears as a particular part of a pre-Calabi-Yau structure, i.e. cyclically invariant, with respect to the natural inner form, solution of the Maurer-Cartan eq
Let $H$ and $L$ be two Hopf algebras such that their comodule categories are monoidal equivalent. We prove that if $H$ is a twisted Calabi-Yau (CY) Hopf algebra, then $L$ is a twisted CY algebra when it is homologically smooth. Especially, if $H$ is
In this paper, we compute all possible differential structures of a $3$-dimensional DG Sklyanin algebra $mathcal{A}$, which is a connected cochain DG algebra whose underlying graded algebra $mathcal{A}^{#}$ is a $3$-dimensional Sklyanin algebra $S_{a