ﻻ يوجد ملخص باللغة العربية
The main objective of this work is to develop a miniaturized, high accuracy, single-turn absolute, rotary encoder called ASTRAS360. Its measurement principle is based on capturing an image that uniquely identifies the rotation angle. To evaluate this angle, the image first has to be classified into its sector based on its color, and only then can the angle be regressed. In-spired by machine learning, we built a calibration setup, able to generate labeled training data automatically. We used these training data to test, characterize, and compare several machine learning algorithms for the classification and the regression. In an additional experiment, we also characterized the tolerance of our rotary encoder to eccentric mounting. Our findings demonstrate that various algorithms can perform these tasks with high accuracy and reliability; furthermore, providing extra-inputs (e.g. rotation direction) allows the machine learning algorithms to compensate for the mechanical imperfections of the rotary encoder.
Large-scale integration of converter-based renewable energy sources (RESs) into the power system will lead to a higher risk of frequency nadir limit violation and even frequency instability after the large power disturbance. Therefore, it is essentia
In this paper, we propose a model-based machine-learning approach for dual-polarization systems by parameterizing the split-step Fourier method for the Manakov-PMD equation. The resulting method combines hardware-friendly time-domain nonlinearity mit
Efficient nonlinearity compensation in fiber-optic communication systems is considered a key element to go beyond the capacity crunch. One guiding principle for previous work on the design of practical nonlinearity compensation schemes is that fewer
We present an introduction to model-based machine learning for communication systems. We begin by reviewing existing strategies for combining model-based algorithms and machine learning from a high level perspective, and compare them to the conventio
In the quest to realize a comprehensive EEG signal processing framework, in this paper, we demonstrate a toolbox and graphic user interface, EEGsig, for the full process of EEG signals. Our goal is to provide a comprehensive suite, free and open-sour