ﻻ يوجد ملخص باللغة العربية
Reflections in videos are obstructions that often occur when videos are taken behind reflective surfaces like glass. These reflections reduce the quality of such videos, lead to information loss and degrade the accuracy of many computer vision algorithms. A video containing reflections is a combination of background and reflection layers. Thus, reflection removal is equivalent to decomposing the video into two layers. This, however, is a challenging and ill-posed problem as there is an infinite number of valid decompositions. To address this problem, we propose a user-assisted method for video reflection removal. We rely on both spatial and temporal information and utilize sparse user hints to help improve separation. The key idea of the proposed method is to use motion cues to separate the background layer from the reflection layer with minimal user assistance. We show that user-assistance significantly improves the layer separation results. We implement and evaluate the proposed method through quantitative and qualitative results on real and synthetic videos. Our experiments show that the proposed method successfully removes reflection from video sequences, does not introduce visual distortions, and significantly outperforms the state-of-the-art reflection removal methods in the literature.
Blind or no-reference video quality assessment of user-generated content (UGC) has become a trending, challenging, unsolved problem. Accurate and efficient video quality predictors suitable for this content are thus in great demand to achieve more in
Traditional reflection removal algorithms either use a single image as input, which suffers from intrinsic ambiguities, or use multiple images from a moving camera, which is inconvenient for users. We instead propose a learning-based dereflection alg
We propose a simple yet effective reflection-free cue for robust reflection removal from a pair of flash and ambient (no-flash) images. The reflection-free cue exploits a flash-only image obtained by subtracting the ambient image from the correspondi
Reflection is common in images capturing scenes behind a glass window, which is not only a disturbance visually but also influence the performance of other computer vision algorithms. Single image reflection removal is an ill-posed problem because th
This paper proposes a novel location-aware deep-learning-based single image reflection removal method. Our network has a reflection detection module to regress a probabilistic reflection confidence map, taking multi-scale Laplacian features as inputs