ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the radiation-induced segregation (RIS) resulting from the coupling between the atomic and point defect (PD) fluxes towards the structural defects of the microstructure. This flux coupling depends on the migration mechanisms of PDs and atoms, including thermal diffusion mechanisms and forced atomic relocations (FAR) occurring in displacement cascades. We derive an analytic model of the PD and solute RIS profiles accounting for PD production and mutual recombination, the FAR mechanism, and the overall sink strength of the microstructure controlling the elimination of PDs at structural defects. From this model, we present a parametric investigation of diffusion and RIS properties in dilute Fe-$B$ ($B$ = P, Mn, Cr, Si, Ni, and Cu) binary alloys, in the form of quantitative temperature/radiation flux/sink strength maps. As in previous works, we distinguish three kinetic domains for the diffusion and RIS properties: the recombination domain, the sink domain, and the thermal domain. Both our analytical approach and numerical applications demonstrate that the diffusion and RIS behaviors of PDs and solute atoms largely differ from one kinetic domain to another. Moreover, at high radiation flux, low temperature, and large sink strength, FARs tend to destroy the solute RIS profiles and therefore reduce the overall amount of RIS by forcing the mixing of solute and host atoms, especially close to PD sinks. Finally, we provide quantitative criteria to emulate in-reactor RIS behaviors by ion irradiation.
Radiation-induced segregation (RIS) of solutes in materials exposed to irradiation is a well-known problem. It affects the life-time of nuclear reactor core components by favouring radiation-induced degradation phenomena such as hardening and embritt
We present the results of ab initio modeling of structure of dilute Ti-Fe, a typical representative of quenched Ti-based transition-metal alloys. We have demonstrated that beyond the solubility limit this alloy cannot be described in common terms of
The present work examines the effect of alloying elements (denoted X) on the ideal shear strength for 26 dilute Ni-based alloys, Ni$_{11}$X, as determined by first-principles calculations of pure alias shear deformations. The variations in ideal shea
We calculate the sink strength of dislocations and toroidal absorbers using Object Kinetic Monte Carlo and compare with the theoretical expressions. We get good agreement for dislocations and loop-shaped absorbers of 3D migrating defects, provided th
A series of sigma-phase Fe_{100-x}V_x samples with 34.4 < x < 59.0 were investigated by neutron and X-ray diffraction and Mossbauer spectroscopy (MS) techniques. The first two methods were used for verification of the transformation from alpha to sig