ترغب بنشر مسار تعليمي؟ اضغط هنا

Insight into Ideal Shear Strength of Ni-based Dilute Alloys using First-Principles Calculations and Correlational Analysis

115   0   0.0 ( 0 )
 نشر من قبل John Shimanek
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present work examines the effect of alloying elements (denoted X) on the ideal shear strength for 26 dilute Ni-based alloys, Ni$_{11}$X, as determined by first-principles calculations of pure alias shear deformations. The variations in ideal shear strength are quantitatively explored with correlational analysis techniques, showing the importance of atomic properties such as size and electronegativity. The shear moduli of the alloys are affirmed to show a strong linear relationship with their ideal shear strengths, while the shear moduli of the individual alloying elements were not indicative of alloy shear strength. Through combination with available ideal shear strength data on Mg alloys, a potential application of the Ni alloy data is demonstrated in the search for a set of atomic features suitable for machine learning applications to mechanical properties. As another illustration, the predicted Ni ideal shear strengths play a key role in a predictive multiscale framework for deformation behavior of single crystal alloys at large strains as shown by the simulated stress-strain curves.



قيم البحث

اقرأ أيضاً

Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possib ilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and ion positions are performed for vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The ensuing simulated coincidence Doppler broadening spectra are compared with measured ones for defect identification. A linear fitting procedure, which uses the spectra for positrons trapped at vacancies in pure constituent metals as components, has previously been employed to find the relative percentages of different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65, 094107 (2002)]. We test the reliability of the procedure by the help of first-principles results for vacancy-solute complexes and vacancies in constituent metals.
Precipitation in Mg-Zn alloys was analyzed by means of first principles calculations. Formation energies of symmetrically distinct hcp Mg1-xZnx (0 < x < 1) configurations were determined and potential candidates for Guinier-Preston zones coherent wit h the matrix were identified from the convex hull. The most likely structures were ranked depending on the interface energy along the basal plane. In addition, the formation energy and vibrational entropic contributions of several phases reported experimentally (Mg4Zn7, MgZn2 cubic, MgZn2 hexagonal, Mg21Zn25 and Mg2Zn11) were calculated. The formation energies of Mg4Zn7, MgZn2 cubic, and MgZn2 hexagonal Laves phases were very close because they were formed by different arrangements of rhombohedral and hexagonal lattice units. It was concluded that beta_1^ precipitates were formed by a mixture of all of them. Nevertheless, the differences in the geometrical arrangements led to variations in the entropic energy contributions which determined the high temperature stability. It was found that the MgZn2 hexagonal Laves phase is the most stable phase at high temperature and, thus, beta_1^ precipitates tend to transform into the beta_2^ (MgZn2 hexagonal) precipitates with higher aging temperature or longer aging times. Finally, the equilibrium beta phase (Mg21Zn25) was found to be a long-range order that precipitates the last one on account of the kinetic processes necessary to trigger the transformation from a short-range order phase beta_2^ to beta .
We report first principles calculations of the structural, electronic, elastic and vibrational properties of the semiconducting orthorhombic ZnSb compound. We study also the intrinsic point defects in order to eventually improve the thermoelectric pr operties of this already very promising thermoelectric material. Concerning the electronic properties, in addition to the band structure, we show that the Zn (Sb) crystallographically equivalent atoms are not exactly equivalent from the electronic point of view. Lattice dynamics, elastic and thermodynamic properties are found to be in good agreement with experiments and they confirm the non equivalency of the zinc and antimony atoms from the vibrational point of view. The calculated elastic properties show a relatively weak anisotropy and the hardest direction is the y direction. We observe the presence of low energy modes involving both Zn and Sb atoms at about 5-6 meV, similarly to what has been found in Zn4Sb3 and we suggest that the interactions of these modes with acoustic phonons could explain the relatively low thermal conductivity of ZnSb. Zinc vacancies are the most stable defects and this explains the intrinsic p-type conductivity of ZnSb.
107 - S.K. Dey , C.C. Dey , S. Saha 2017
Time-differential perturbed angular correlation (TDPAC) measurements have been carried out in stoichiometric ZrNi$_3$ and HfNi$_3$ intermetallic compounds using $^{181}$Ta probe in the temperature range 77-1073 K considering the immense technological applications of Zr-Ni and Hf-Ni intermetallic compounds. In ZrNi$_3$, four components due to the production of Zr$_2$Ni$_7$, Zr$_8$Ni$_{21}$, Zr$_7$Ni$_{10}$ and ZrNi$_3$ have been found at room temperature. The HfNi$_3$ sample produces five electric quadrupole interaction frequencies at room temperature. The phase HfNi$_3$ is strongly produced in stoichiometric sample of HfNi$_3$ where two non-equivalent Hf sites are found to be present. Besides this phase, two other phases due to Hf$_2$Ni$_7$ and Hf$_8$Ni$_{21}$ have been found but, we do not observe any phase due to Hf$_7$Ni$_{10}$. X-ray diffraction, TEM/energy dispersive X-ray spectroscopy (EDX) and TEM-selected area electron diffraction (SAED) measurements were used to further characterize the investigated materials and it was found that these results agree with the TDPAC results. In order to confirm findings from TDPAC measurements, density functional theory (DFT) based calculations of electric field gradients (EFG) and asymmetry parameters at the sites of $^{181}$Ta probe nucleus were performed. Our calculated results are found to be in excellent agreement with the experimental results.
The light elemental solutes B, C, N, and O can penetrate the surface of Mg alloys and diffuse during heat treatment or high temperature application, forming undesirable compounds. We investigate the diffusion of these solutes by determining their sta ble interstitial sites and the inter-penetrating network formed by these sites. We use density functional theory (DFT) to calculate the site energies, migration barriers, and attempt frequencies for these networks to inform our analytical model for bulk diffusion. Due to the nature of the networks, O diffuses isotropically, while B, C, and N diffuse anisotropically. We compute the elastodiffusion tensor which quantifies changes in diffusivity due to small strains that perturb the diffusion network geometry and the migration barriers. The DFT-computed elastic dipole tensor which quantifies the change in site energies and migration barriers due to small strains is used as an input to determine the elastodiffusion tensor. We employ the elastodiffusion tensor to determine the effect of thermal strains on interstitial diffusion and find that B, C, and N diffusivity increases on crystal expansion, while O diffusivity decreases. From the elastodiffusion and compliance tensors we calculate the activation volume of diffusion and find that it is positive and anisotropic for B, C and N diffusion, whereas it is negative and isotropic for O diffusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا