ﻻ يوجد ملخص باللغة العربية
We report the observation of the higher order frequency shift due to the trapping field in a $^{87}$Sr optical lattice clock. We show that at the magic wavelength of the lattice, where the first order term cancels, the higher order shift will not constitute a limitation to the fractional accuracy of the clock at a level of $10^{-18}$. This result is achieved by operating the clock at very high trapping intensity up to $400 $kW/cm$^2$ and by a specific study of the effect of the two two-photon transitions near the magic wavelength.
Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock
We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the st
Optical frequency comparison of the 40Ca+ clock transition u_{Ca} (2S1/2-2D5/2, 729nm) against the 87Sr optical lattice clock transition u_{Sr}(1S0-3P0, 698nm) has resulted in a frequency ratio u_{Ca} / u_{Sr} = 0.957 631 202 358 049 9(2 3). The
Optical atomic clocks promise timekeeping at the highest precision and accuracy, owing to their high operating frequencies. Rigorous evaluations of these clocks require direct comparisons between them. We have realized a high-performance remote compa
Existing optical lattice clocks demonstrate a high level of performance, but they remain complex experimental devices. In order to address a wider range of applications including those requiring transportable devices, it will be necessary to simplify