ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong rainbow disconnection in graphs

51   0   0.0 ( 0 )
 نشر من قبل Xueliang Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a nontrivial edge-colored connected graph. An edge-cut $R$ of $G$ is called a {it rainbow edge-cut} if no two edges of $R$ are colored with the same color. For two distinct vertices $u$ and $v$ of $G$, if an edge-cut separates them, then the edge-cut is called a {it $u$-$v$-edge-cut}. An edge-colored graph $G$ is called emph{strong rainbow disconnected} if for every two distinct vertices $u$ and $v$ of $G$, there exists a both rainbow and minimum $u$-$v$-edge-cut ({it rainbow minimum $u$-$v$-edge-cut} for short) in $G$, separating them, and this edge-coloring is called a {it strong rainbow disconnection coloring} (srd-{it coloring} for short) of $G$. For a connected graph $G$, the emph{strong rainbow disconnection number} (srd-{it number} for short) of $G$, denoted by $textnormal{srd}(G)$, is the smallest number of colors that are needed in order to make $G$ strong rainbow disconnected. In this paper, we first characterize the graphs with $m$ edges such that $textnormal{srd}(G)=k$ for each $k in {1,2,m}$, respectively, and we also show that the srd-number of a nontrivial connected graph $G$ equals the maximum srd-number among the blocks of $G$. Secondly, we study the srd-numbers for the complete $k$-partite graphs, $k$-edge-connected $k$-regular graphs and grid graphs. Finally, we show that for a connected graph $G$, to compute $textnormal{srd}(G)$ is NP-hard. In particular, we show that it is already NP-complete to decide if $textnormal{srd}(G)=3$ for a connected cubic graph. Moreover, we show that for a given edge-colored (with an unbounded number of colors) connected graph $G$ it is NP-complete to decide whether $G$ is strong rainbow disconnected.



قيم البحث

اقرأ أيضاً

An edge-cut $R$ of an edge-colored connected graph is called a rainbow-cut if no two edges in the edge-cut are colored the same. An edge-colored graph is rainbow disconnected if for any two distinct vertices $u$ and $v$ of the graph, there exists a $ u$-$v$-rainbow-cut separating them. For a connected graph $G$, the rainbow disconnection number of $G$, denoted by rd$(G)$, is defined as the smallest number of colors that are needed in order to make $G$ rainbow disconnected. In this paper, we first give some tight upper bounds for rd$(G)$, and moreover, we completely characterize the graphs which meet the upper bound of the Nordhaus-Gaddum type results obtained early by us. Secondly, we propose a conjecture that $lambda^+(G)leq textnormal{rd}(G)leq lambda^+(G)+1$, where $lambda^+(G)$ is the upper edge-connectivity, and prove the conjecture for many classes of graphs, to support it. Finally, we give the relationship between rd$(G)$ of a graph $G$ and the rainbow vertex-disconnection number rvd$(L(G))$ of the line graph $L(G)$ of $G$.
113 - Xueliang Li , Yindi Weng 2020
Let $G$ be a nontrivial connected and vertex-colored graph. A subset $X$ of the vertex set of $G$ is called rainbow if any two vertices in $X$ have distinct colors. The graph $G$ is called emph{rainbow vertex-disconnected} if for any two vertices $x$ and $y$ of $G$, there exists a vertex subset $S$ such that when $x$ and $y$ are nonadjacent, $S$ is rainbow and $x$ and $y$ belong to different components of $G-S$; whereas when $x$ and $y$ are adjacent, $S+x$ or $S+y$ is rainbow and $x$ and $y$ belong to different components of $(G-xy)-S$. Such a vertex subset $S$ is called a emph{rainbow vertex-cut} of $G$. For a connected graph $G$, the emph{rainbow vertex-disconnection number} of $G$, denoted by $rvd(G)$, is the minimum number of colors that are needed to make $G$ rainbow vertex-disconnected. In this paper, we obtain bounds of the rainbow vertex-disconnection number of a graph in terms of the minimum degree and maximum degree of the graph. We give a tighter upper bound for the maximum size of a graph $G$ with $rvd(G)=k$ for $kgeqfrac{n}{2}$. We then characterize the graphs of order $n$ with rainbow vertex-disconnection number $n-1$ and obtain the maximum size of a graph $G$ with $rvd(G)=n-1$. Moreover, we get a sharp threshold function for the property $rvd(G(n,p))=n$ and prove that almost all graphs $G$ have $rvd(G)=rvd(overline{G})=n$. Finally, we obtain some Nordhaus-Gaddum-type results: $n-5leq rvd(G)+rvd(overline{G})leq 2n$ and $n-1leq rvd(G)cdot rvd(overline{G})leq n^2$ for the rainbow vertex-disconnection numbers of nontrivial connected graphs $G$ and $overline{G}$ with order $ngeq 24$.
157 - Lin Chen , Xueliang Li , Henry Liu 2016
An edge-coloured path is emph{rainbow} if all the edges have distinct colours. For a connected graph $G$, the emph{rainbow connection number} $rc(G)$ is the minimum number of colours in an edge-colouring of $G$ such that, any two vertices are connect ed by a rainbow path. Similarly, the emph{strong rainbow connection number} $src(G)$ is the minimum number of colours in an edge-colouring of $G$ such that, any two vertices are connected by a rainbow geodesic (i.e., a path of shortest length). These two concepts of connectivity in graphs were introduced by Chartrand et al.~in 2008. Subsequently, vertex-colour
Let $G$ be a simple $n$-vertex graph and $c$ be a colouring of $E(G)$ with $n$ colours, where each colour class has size at least $2$. We prove that $(G,c)$ contains a rainbow cycle of length at most $lceil frac{n}{2} rceil$, which is best possible. Our result settles a special case of a strengthening of the Caccetta-Haggkvist conjecture, due to Aharoni. We also show that the matroid generalization of our main result also holds for cographic matroids, but fails for binary matroids.
There has been much research on the topic of finding a large rainbow matching (with no two edges having the same color) in a properly edge-colored graph, where a proper edge coloring is a coloring of the edge set such that no same-colored edges are i ncident. Barat, Gyarfas, and Sarkozy conjectured that in every proper edge coloring of a multigraph (with parallel edges allowed, but not loops) with $2q$ colors where each color appears at least $q$ times, there is always a rainbow matching of size $q$. Recently, Aharoni, Berger, Chudnovsky, Howard, and Seymour proved a relaxation of the conjecture with $3q-2$ colors. Our main result proves that $2q + o(q)$ colors are enough if the graph is simple, confirming the conjecture asymptotically for simple graphs. This question restricted to simple graphs was considered before by Aharoni and Berger. We also disprove one of their conjectures regarding the lower bound on the number of colors one needs in the conjecture of Barat, Gyarfas, and Sarkozy for the class of simple graphs. Our methods are inspired by the randomized algorithm proposed by Gao, Ramadurai, Wanless, and Wormald to find a rainbow matching of size $q$ in a graph that is properly edge-colored with $q$ colors, where each color class contains $q + o(q)$ edges. We consider a modified version of their algorithm, with which we are able to prove a generalization of their statement with a slightly better error term in $o(q)$. As a by-product of our techniques, we obtain a new asymptotic version of the Brualdi-Ryser-Stein Conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا