ﻻ يوجد ملخص باللغة العربية
An edge-coloured path is emph{rainbow} if all the edges have distinct colours. For a connected graph $G$, the emph{rainbow connection number} $rc(G)$ is the minimum number of colours in an edge-colouring of $G$ such that, any two vertices are connected by a rainbow path. Similarly, the emph{strong rainbow connection number} $src(G)$ is the minimum number of colours in an edge-colouring of $G$ such that, any two vertices are connected by a rainbow geodesic (i.e., a path of shortest length). These two concepts of connectivity in graphs were introduced by Chartrand et al.~in 2008. Subsequently, vertex-colour
Let $G$ be a nontrivial edge-colored connected graph. An edge-cut $R$ of $G$ is called a {it rainbow edge-cut} if no two edges of $R$ are colored with the same color. For two distinct vertices $u$ and $v$ of $G$, if an edge-cut separates them, then t
Let $k$ be a positive integer, and $G$ be a $k$-connected graph. An edge-coloured path is emph{rainbow} if all of its edges have distinct colours. The emph{rainbow $k$-connection number} of $G$, denoted by $rc_k(G)$, is the minimum number of colours
A path in an(a) edge(vertex)-colored graph is called a conflict-free path if there exists a color used on only one of its edges(vertices). An(A) edge(vertex)-colored graph is called conflict-free (vertex-)connected if for each pair of distinct vertic
Given graphs $G$ and $H$ and a positive integer $k$, the emph{Gallai-Ramsey number}, denoted by $gr_{k}(G : H)$ is defined to be the minimum integer $n$ such that every coloring of $K_{n}$ using at most $k$ colors will contain either a rainbow copy o
Let $G$ be a nontrivial connected and vertex-colored graph. A subset $X$ of the vertex set of $G$ is called rainbow if any two vertices in $X$ have distinct colors. The graph $G$ is called emph{rainbow vertex-disconnected} if for any two vertices $x$