ﻻ يوجد ملخص باللغة العربية
Convolutional Neural Networks (CNNs) are known to be significantly over-parametrized, and difficult to interpret, train and adapt. In this paper, we introduce a structural regularization across convolutional kernels in a CNN. In our approach, each convolution kernel is first decomposed as 2D dictionary atoms linearly combined by coefficients. The widely observed correlation and redundancy in a CNN hint a common low-rank structure among the decomposed coefficients, which is here further supported by our empirical observations. We then explicitly regularize CNN kernels by enforcing decomposed coefficients to be shared across sub-structures, while leaving each sub-structure only its own dictionary atoms, a few hundreds of parameters typically, which leads to dramatic model reductions. We explore models with sharing across different sub-structures to cover a wide range of trade-offs between parameter reduction and expressiveness. Our proposed regularized network structures open the door to better interpreting, training and adapting deep models. We validate the flexibility and compatibility of our method by image classification experiments on multiple datasets and underlying network structures, and show that CNNs now maintain performance with dramatic reduction in parameters and computations, e.g., only 5% parameters are used in a ResNet-18 to achieve comparable performance. Further experiments on few-shot classification show that faster and more robust task adaptation is obtained in comparison with models with standard convolutions.
In one-shot weight sharing for NAS, the weights of each operation (at each layer) are supposed to be identical for all architectures (paths) in the supernet. However, this rules out the possibility of adjusting operation weights to cater for differen
Neural architecture search (NAS) has attracted increasing attentions in both academia and industry. In the early age, researchers mostly applied individual search methods which sample and evaluate the candidate architectures separately and thus incur
Vision Transformer (ViT) attains state-of-the-art performance in visual recognition, and the variant, Local Vision Transformer, makes further improvements. The major component in Local Vision Transformer, local attention, performs the attention separ
Searching for network width is an effective way to slim deep neural networks with hardware budgets. With this aim, a one-shot supernet is usually leveraged as a performance evaluator to rank the performance wrt~different width. Nevertheless, current
Transformers have shown improved performance when compared to previous architectures for sequence processing such as RNNs. Despite their sizeable performance gains, as recently suggested, the model is computationally expensive to train and with a hig